摘要
搭建了驾驶员疲劳检测的信息采集系统,采用ARM嵌入式开发,可采集驾驶员的人脸图像、温度、心率、GPS定位等信息,并将相关信息通过Web上传模块上传到后台软件系统,通过后台处理驾驶员疲劳状态图像,得到处理结果并通过LCD屏显示。后台软件系统使用基于深度学习的疲劳驾驶检测算法,利用百度人脸识别模块实现人脸识别确定身份。利用深度学习神经网络模型YOLOv3算法检测出常规摄像头实时采集的驾驶人员人脸图像,利用特征点模型实现眼睛和嘴巴区域的分割,采用金字塔分离特征,采用了Mosaic数据图像增强,使用YawDD作为疲劳驾驶检测模型的数据集,通过循环神经网络(RNN)中的长短记忆网络算法训练模型,最终实现驾驶员疲劳度检测。
An information collection system is established for driver fatigue detection.The collection system adopts ARM embedded development,which can collect driver facial images,temperature,heart rate,GPS positioning and other information.The relevant information is uploaded to the backend software system through a Web upload module.The driver fatigue status image is processed in the backend,and the processing results are obtained and displayed on an LCD screen.The backend software system uses a fatigue driving detection algorithm based on deep learning,and uses the Baidu facial recognition module to achieve facial recognition and determine identity.The YOLOv3 algorithm,a deep learning neural network model,is used to detect real-time facial images of drivers captured by conventional cameras.The feature point model is used to segment the eye and mouth regions.The pyramid separation feature and Mosaic data image enhancement are used,and YawDD is used as the dataset for fatigue driving detection model.The model is trained using the long and short memory network algorithm in the recurrent neural network(RNN).Finally,driver fatigue detection is achieved.
作者
肖心远
黄剑
孙潇鹏
吴朝荣
Xiao Xinyuan;Huang Jian;Sun Xiaopeng;Wu Zhaorong(Guangdong Communication Polytechnic College,Guangzhou 510650,China)
出处
《机电工程技术》
2023年第12期201-203,295,共4页
Mechanical & Electrical Engineering Technology
基金
广东省交通运输厅项目(2013-02-092)
广东省教育厅科研项目(2021KTSCX222)
广东省攀登计划项目(pdjh2022b0853)
广东省教育科学规划课题(2021GXJK594)。