期刊文献+

基于嘴部Gabor小波特征和线性判别分析的疲劳检测 被引量:4

Yawning Detection Based on Gabor Wavelets and LDA
下载PDF
导出
摘要 为了提高驾驶的安全性,提出一种通过摄像头定位驾驶员的嘴部,利用嘴角的纹理特征检测打哈欠的方法.在人脸检测的基础上,用灰度投影定位左右嘴角,采用Gabor小波提取嘴角的纹理特征,通过线性判别分析(linear discriminant analysis,LDA)判定是否打哈欠.试验数据为30人的3 000幅图像,数据中包含了光照、姿态、面部饰物(眼镜)等变化.试验结果表明,该方法符合实时打哈欠分析的需要;Gabor小波特征比几何特征更适合描述打哈欠时嘴部的变化;算法的平均识别率为91.97%,比嘴部宽高比的几何特征有较大提高. To improve driving safety,the authors propose an approach to locate a driver s mouth by a web camera and extract texture features from mouth comers for monitoring drivers yawning.Firstly,it detects drivers left and right mouth corners by gray projection based on the result of driver face detection,and then it extracts texture features of drivers mouth corners by Gabor wavelets.Finally,LDA is used to classify Gabor features for yawning detection.The proposed approach is tested on 3 000 images from thirty ...
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2009年第3期409-413,432,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(60533030) 北京市自然科学基金资助项目(4061001) 北京市属市管高等学校人才强教计划资助项目.
关键词 计算机视觉 疲劳 GABOR小波 线性判别分析 computer vision fatigue Gabor wavelets linear discriminant analysis(LDA)
  • 相关文献

参考文献3

二级参考文献11

  • 1徐大威 李伟 等.多层BP网络的研究及应用[J].信息与控制,1995,24:588-596. 被引量:3
  • 2张雄伟,DSP芯片的原理与开发应用,1997年 被引量:1
  • 3Yang M H,Kriegman D.Detecting faces in images:a survey[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(1):34-58. 被引量:1
  • 4Eraud R F,Bemier O J,Viallet J E,et al.A fast and accurate face detection based on neural network[ J ].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(1):42-53. 被引量:1
  • 5Bishop R,Bishop R.Consulting survey of intelligent vehicle applications worldwide[ C ] // Proceedings of the IEEE Intelligent Vehicles Symposium 2000.New York:IEEE Press,2000:25-30. 被引量:1
  • 6Greenspan H,Goldberger J,Eshet I.Mixture model for facecolor modeling and segmentation[ J ].Pattern Recognition Letters,2001,22(14):1525-1536. 被引量:1
  • 7Liu H,Gao W,Miao J,et al.A novel method to compensate variety of illumination in face detection[ C ] // Proc 6th Joint Conference on Information Sciences.Research Triangle Park,North Carolina,2002:692-695. 被引量:1
  • 8Wang W,Shan S G,Gao W,et al.An improved active shape model for face aligrment[C] // Fourth IEEE International Conference on Multimodal Interface.New York:IEEE Press,2002:523-528. 被引量:1
  • 9Tang C Y,Chen Z,Huang Y P.Automatic detection and tracking of human heads using an active stereo vision system[ J ].International Journal of Pattern Recognition and Artificial Intelligence,2000,14(2):137-166. 被引量:1
  • 10周玉彬,俞梦孙.疲劳驾驶检测方法的研究[J].医疗卫生装备,2003,24(6):25-28. 被引量:55

共引文献23

同被引文献25

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部