期刊文献+

基于坐标注意力生成对抗网络的图像超分辨率重建

Image super-resolution reconstruction algorithm based on coordinated attention generative adversarial network
下载PDF
导出
摘要 针对现有图像超分辨率重建模型参数过大,难以在现实中应用的问题,提出了一种单图像超分辨率重建模型——基于坐标注意力机制的生成对抗网络(Generative Adversarial Network Based on Coordinate Attention Mechanism,CSRGAN).通过优化在SRGAN的生成器,将坐标注意力机制与残差网络相结合构造CR模块,促进通道之间信息的流通,并加强了网络的特征选择能力;同时在主网络构建了层次化特征融合结构,提高在深层网络中对早期特征的利用,大量的长短跳连接缓解了梯度消失,提高了网络收敛速度.在Set5、Set14、BSD100和Urban100数据集上与RFB-ESRGAN、ESRGAN等模型进行测试,在峰值信噪比(PSNR)和结构相似度(SSIM)都有所提高,同时模型参数量有极大减少,重建的图像在清晰度、结构完整性等方面都有所提高. Aiming at the problem that the parameters of the existing image super-resolution reconstruction model are too large to be applied in reality,a single-image super-resolution reconstruction model——Generative Adversarial Network Based on Coordinate Attention Mechanism(CSRGAN)is proposed.By optimizing the generator in SRGAN,the coordinate attention mechanism is combined with the residual network to construct the CR module,which promotes the flow of information between channels and strengthens the feature selection ability of the network;at the same time,a hierarchical feature fusion is built in the main network structure,improve the utilization of early features in the deep network,and a large number of long and short jump connections alleviate the gradient disappearance and improve the network convergence speed.Tested with RFB-ESRGAN,ESRGAN and other models on Set5,Set14,BSD100 and Urban100 data sets,the Peak Signal-to-Noise Ratio(PSNR)and Structural Similarity(SSIM)have been improved,and the number of model parameters has been greatly reduced,the reconstructed image has improved clarity and structural integrity.
作者 贺智明 黄志成 HE Zhiming;HUANG Zhicheng(School of Information Engineering,Jiangxi University of Science&Technology,Ganzhou 341000,China)
出处 《微电子学与计算机》 2023年第12期35-44,共10页 Microelectronics & Computer
基金 国家自然科学基金(61862031)。
关键词 图像超分辨率重建 生成对抗网络 坐标注意力 残差网络 image super-resolution reconstruction GAN coordinate attention residual network
  • 相关文献

参考文献5

二级参考文献14

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部