期刊文献+

基于整体变分模型的随机值脉冲噪声去除方法

Removal Method of Random-Valued Impulse Noise Based on Total Variation Model
下载PDF
导出
摘要 为了有效地检测随机值脉冲噪声并去除干扰,提出一种新的开关整体变分去噪方法。根据不同密度的随机值脉冲噪声,分别在3 px×3 px、5 px×5 px和7 px×7 px的窗口邻域内进行噪声检测及检测结果修正,对判断为噪声的像素点采用基于整体变分模型的方法去噪,再采用动态阈值对去噪后的图像进行多次噪声检测和噪声去除,从而进一步提高去噪效果。仿真实验结果表明:对于不同密度的随机值脉冲噪声图像,该方法在有效去除噪声的同时还可以较好地保护图像的细节信息,峰值信噪比相比其他方法提高显著。 To effectively detect random-valued impulse noise and remove its interference on the image,this paper proposes a new switching total variation denoising method.The method detects and modifies noise in different window neighborhoods of 3 px×3 px,5 px×5 px and 7 px×7 px according to different densities of random-valued impulse noise,and adopts a total variation based method to denoise the pixels that are finally judged as noise.In addition,the method uses a dynamic threshold to perform multiple noise detection and removal on the denoised image,thereby further improving the denoising effect.Simulation results show that the method can effectively remove noise and protect image details for images with random-valued impulse noise of different densities.It outperforms other methods in terms of peak signal noise ratio.
作者 胡樾 陶胜 HU Yue;TAO Sheng(Chengyi College,Jimei University,Xiamen 361021,China;School of Science,Jimei University,Xiamen 361021,China)
出处 《集美大学学报(自然科学版)》 CAS 2023年第5期454-460,共7页 Journal of Jimei University:Natural Science
关键词 随机值脉冲噪声 噪声检测 整体变分模型 图像去噪 峰值信噪比 random-valued impulse noise noise detection total variation modal image denoising peak signal noise ratio(PSNR)
  • 相关文献

参考文献4

二级参考文献25

  • 1周廷方,汤锋,王进,王章野,彭群生.基于径向基函数的图像修复技术[J].中国图象图形学报(A辑),2004,9(10):1190-1196. 被引量:23
  • 2檀结庆,汪忠庆.一种新的基于邻近像素点的图像修复算法[J].合肥工业大学学报(自然科学版),2006,29(9):1072-1076. 被引量:12
  • 3Chan T, $hen F. Mathematical models for local non-texture inpaintings[J]. SIAM Journal on Applied Mathematics, 2002(62) : 1019 - 1043. 被引量:1
  • 4Chan T, Shen J. Non- texture inpainting by culvaturedriven diffusions (CDD) [ R ]. UCLA, Technical Report CAM 00- 35, Image processing Research Group,2000. 被引量:1
  • 5Selim Esedoglu, Jianhong Shen. Digital inpainting based on the mumford shah euler image model[J]. Eum. Jnl of Applied Mathematics, 2002 (13) : 353 - 370. 被引量:1
  • 6Criminisi A, Perez P, Toyama K. Object removal by exemplar-based inpainting [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Madison,Wisconsin,USA,2003. 721--728. 被引量:1
  • 7Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting [C]//Proeeedings of International Conference on Computer Graphics and Interactive Techniques, New Orleans, Louisiapa, USA, 2000: 417--424. 被引量:1
  • 8Chan T F, Shen J. Non-texture inpainting by curvature-driven diffusions (CDD) [ J ]. Journal of Visual Communication and Image Representation, 2001,12 (4) : 436-- 449. 被引量:1
  • 9Chan T F, Shen J. Mathematical models for local nontexture inpaintings [J]. SIAM Journal on Applied Math, 2001,62 (3) :1019--1043. 被引量:1
  • 10Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992,60 :259-- 268. 被引量:1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部