期刊文献+

基于全变差和P-Laplace模型的混合图像修复算法 被引量:7

Hybrid image restoration algorithm based on total variation and P-Laplace models
下载PDF
导出
摘要 图像修复是近年来图像处理研究的主要问题之一.在基于偏微分方程的修复算法中,全变差(total variation,TV)模型能够很好地保护图像边缘信息,但其各向异性扩散方式在平坦区域容易产生阶梯效应;而在图像平坦区域具有良好修复效果的P-Laplace模型,其各向同性扩散方式不适于修复图像边缘信息.将TV模型和P-Laplace模型有机结合起来,提出了一种混合图像修复算法.提出的扩散控制参数k能够根据待修复像素所在区域调节两种信息扩散方式的重要程度,实现混合图像修复.实验结果表明,所提算法获得了更好的修复结果. Image restoration is one of the major problems of image processing research in recent years.In the image restoration algorithms based on partial differential equation,the total variation (TV)model can well protect the image edge information,but in the flat areas,the anisotropic diffusion TV model can easily generate ladder effect.While the isotropic diffusion P-Laplace model can obtain good restoration results in the flat areas,but it is not suitable to restore the image edge information.Based on the TV and P-Laplace models, a hybrid image restoration algorithm is proposed,in which the control parameter k can adjust the importance degree of the two diffusion methods according to the image areas,and realize hybrid image restoration.Experimental results show that the proposed algorithm can obtain better restoration results.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2014年第6期676-681,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(61305034) 大连理工大学基本科研业务费资助项目(DUT13JS03)
关键词 图像修复 全变差(TV)模型 P-Laplace 模型 image restoration total variation (TV)model P-Laplace model
  • 相关文献

参考文献9

二级参考文献79

  • 1周廷方,汤锋,王进,王章野,彭群生.基于径向基函数的图像修复技术[J].中国图象图形学报(A辑),2004,9(10):1190-1196. 被引量:23
  • 2檀结庆,汪忠庆.一种新的基于邻近像素点的图像修复算法[J].合肥工业大学学报(自然科学版),2006,29(9):1072-1076. 被引量:12
  • 3Donoho D L and Johhstone I M. Ideal special adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425-455. 被引量:1
  • 4Chang S G, Yu B, and VetterliM. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. on Image Processing, 2000, 9(9) :1532-1546. 被引量:1
  • 5Crouse M S, Nowak R D, and Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. on Signal Processing, 1998, 46(4): 886-902. 被引量:1
  • 6Portilla J, Strela V, Wainwright M J, and Simoncelli E P. Image denoising using scale mixture of Gaussians in the wavelet domain. IEEE Trans. on Image Processing, 2003, 12(11): 1338-1351. 被引量:1
  • 7Sendur L and Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. on Signal Processing, 2002, 50(11): 2744-2756. 被引量:1
  • 8Do M N and Vetterli M. The Contourlet transform:An efficient directional multiresolution image respresentation. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106. 被引量:1
  • 9Cunha A L da, Zhou J P, and Do M N. The nonsubsampled Contourlet transform:Theory, design and application. IEEE Trans. on Image Processing, 2006, 15(10): 3089-3101. 被引量:1
  • 10Po D D Y and Do M N. Directional multiscale modeling of images using the Contourlet transform. IEEE Trans. on Image Processing, 2006, 6(15): 1610-1620. 被引量:1

共引文献48

同被引文献55

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部