期刊文献+

基于图核的动态脑网络状态构建方法及其应用

CONSTRUCTION METHOD OF DYNAMIC BRAIN NETWORK STATE BASED ON GRAPH KERNEL AND ITS APPLICATION
下载PDF
导出
摘要 动态脑网络能有效反映脑网络中连接结构的动态变化信息,被广泛使用于脑疾病的识别研究中。动态脑网络由一组连接矩阵组成。通常研究者会基于矩阵上三角元素向量的L2距离,计算所有样本连接矩阵的距离矩阵,使用状态聚类将这些连接矩阵划分为不同的状态。但是简单地使用L2距离,且在全部样本上进行状态聚类会导致忽视连接矩阵所代表的脑网络的图结构信息以及个体之间的差异。因此,提出一种新的基于图核的动态脑网络状态构建方法。该方法针对单个体的动态脑网络设计,使用图核衡量单个样本的动态脑网络连接矩阵之间的相似性,随后根据相似性矩阵,将连接矩阵与其最相似的矩阵进行合并。在精神分裂症数据集上验证该方法的有效性,其结果证明所提方法可以获取81.6%的分类精度。 The dynamic brain network can effectively reflect the dynamic information of the structure in the brain network,and is widely used in the research of brain disease identification.The dynamic brain network consists of a set of connection matrix.Generally,researchers calculated the distance matrix of all samples'connection matrices based on the L2 distance of the vector generated by the triangular elements of the matrix,and then used K-means clustering to divide these connection matrices into different states.However,simple using the L2 distance and K-means clustering on all samples would lead to ignore the graph structure information of brain network represented by the connection matrix and individual differences between samples.Hence,to solve these two problems,this paper proposed a new dynamic brain network state construction method based on the graph kernel.Aiming at the construction of the dynamic brain network states for each single sample,this method used the graph kernel to measure the similarity between connection matrixes of the dynamic brain network,and combined the connection matrix and it's the most similar matrix according to the similarity matrix.We extensively evaluated this method on a real Schizophrenia dataset.The results show that the proposed method can obtain 81.6%classification accuracy.
作者 袁新颜 黄嘉爽 Yuan Xinyan;Huang Jiashuang(Jiangsu Vocational College of Business,Nantong 226011,Jiangsu,China;School of Information Science and Technology,Nantong University,Nantong 226019,Jiangsu,China)
出处 《计算机应用与软件》 北大核心 2023年第12期108-113,168,共7页 Computer Applications and Software
基金 南通市科技局基础科学研究项目(JC22022060)。
关键词 动态脑网络 精神分裂症 图核 网络状态 Dynamic brain network Schizophrenia Graph kernel Network state
  • 相关文献

参考文献2

二级参考文献86

  • 1Cammoun L, Gigandet X, Sporns O, et al. Connectome alterations in schizophrenia. Neurolmage, 2009, 47:S157. 被引量:1
  • 2Vaessen M J, Jansen J F, Hofman P A, et al. Impaired small-world structural brain networks in chronic epilepsy. Neurolmage, 2009, 47: S113. 被引量:1
  • 3Friston K J, Frith C D, Liddle P F, et al. Functional connectivity: The principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab, 1993, 13:5-14. 被引量:1
  • 4Stam C J. From synchronization to networks: Assessment of functional connectivity in the brain. In: Perez Velazquez J L, Richard W, eds. Coordinated Activity in the Brain, vol 2. Berlin Heidelberg: Springer-Verlag, 2009.91-115. 被引量:1
  • 5Stephan, Hilgetag K E, Burns C C, et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci, 2000, 355:111-126. 被引量:1
  • 6Micheloyannis S, Pachou S, Stam C J, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett, 2006, 402:273-277. 被引量:1
  • 7Micheloyannis S, Vourkas S, Tsirka M, et al. The influence of ageing on complex brain networks: A graph theoretical analysis. Hum Brain Mapp, 2009, 30:200-208. 被引量:1
  • 8Ferri R, Rundo F, Bruni O, et al. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol, 2007, 118:449-456. 被引量:1
  • 9Dimitriadis S I, Laskaris N A, Del Rio-Portilla Y, et al. Characterizing dynamic functional connectivity across sleep stages from EEG. Brain Topogr, 2009, 22:119-133. 被引量:1
  • 10Stam C J. Functional connectivity patterns of human magnetoencephalographic recordings: A 'small-world' network? Neurosci Lett, 2004, 355:25-28. 被引量:1

共引文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部