期刊文献+

激光诱导击穿光谱技术在提高矿冶分析准确度的研究进展

Research progress on laser-induced breakdown spectroscopy for improving the accuracy of mining and metallurgical analysis
下载PDF
导出
摘要 激光诱导击穿光谱法(LIBS)是一种基于原子发射光谱的多元素分析方法,具有快速、准确、无需复杂的样品制备和远程分析的优点.然而,由于矿石、冶金样品化学成分的复杂性和多样性,干扰信号多,以及激光光谱的谱线维度较高和自吸收效应严重,LIBS技术在矿冶领域定性、定量分析的准确性受到了一定影响.本文综述了LIBS在矿冶领域3种信号增强方法,分别是双脉冲、纳米粒子增强和空间约束,以及综述了降噪、归一化和自吸收校正3种光谱预处理方法.此外,为提高定性、定量模型的泛化能力和分析的准确性,人们在模型算法和参数优化做了大量的工作.简要概述了主成分分析、偏最小二乘判别分析、支持向量机、随机森林和人工神经网络5种LIBS定性分析建模方法在矿石、冶金样品中的应用,以及概述了多元线性回归、偏最小二乘法、支持向量机、人工神经网络和自由定标法5种定量分析建模方法在矿石、冶金样品中的应用成果,并对LIBS技术未来在矿冶分析领域的发展进行了展望. Laser-induced breakdown spectroscopy(LIBS)is a type of atomic emission spectroscopy for multi-element analysis.This analysis is rapid and accurate,has a simple sample preparation,and realizes remote analysis.However,the accuracy of the qualitative and quantitative LIBS analysis methods in the field of mining and metallurgy has suffered from the complexity and diversity of the chemical composition of ore and metallurgical samples,interference signals,high dimension of the laser spectrum line,and severe self-absorption effect.To enhance the accuracy of LIBS analysis in the mining and metallurgy field,researchers have conducted numerous research on signal enhancement,spectral pretreatment,and modeling methods.In this review,three signal enhancement methods of LIBS in mining and metallurgy are evaluated:double pulse,nanoparticle enhancement,and space constraint.To avoid noise interference,overfitting,and“self-erosion,”three spectral preprocessing methods,including noise reduction,normalization,and self-absorption correction,are also reviewed.Moreover,to improve the generalization ability and analysis accuracy of the qualitative and quantitative modeling methods,extensive research has been conducted on model algorithms and parameter optimization.This paper briefly outlines the application of five typical LIBS qualitative analysis modeling methods in ore and metallurgical samples:principal component analysis method,partial least squares discriminant analysis method,support vector machine,random forest,and artificial neural network,and application results of five quantitative analysis modeling methods in ore and metallurgical samples:multiple linear regression method,partial least square method,support vector machine,artificial neural network,and free calibration method.Currently,light element ores,such as phosphate and lithium ores,rare earth and scattered elements,and the combined use of instruments are rarely investigated using LIBS;thus,future developments in LIBS technology for mineral and metallurgical analysi
作者 毛小晶 史烨弘 蒯丽君 李华昌 刘杰民 MAO Xiaojing;SHI Yehong;KUAI Lijun;LI Huachang;LIU Jiemin(School of Chemical and Biological Engineering,University of Science and Technology Beijing,Beijing 100083,China;School of Chemistry and Environmental Science,Shangrao Normal University,Shangrao 334001,China;BGRIMM MTC Technology Co.,LTD,Beijing 102628,China;BGRIMM Technology Group,Beijing 100160,China)
出处 《工程科学学报》 EI CSCD 北大核心 2024年第1期23-32,共10页 Chinese Journal of Engineering
基金 国家重点研发计划资助项目(2021YFC2903101) 国家自然科学基金面上资助项目(22178022)。
关键词 激光诱导击穿光谱法 矿石和冶金样品 信号增强 光谱预处理 定性和定量 laser-induced breakdown spectroscopy ore and metallurgical samples signal enhancement spectral preprocessing qualitative and quantitative
  • 相关文献

参考文献17

二级参考文献120

  • 1叶美盈,汪晓东.混沌光学系统辨识的支持向量机方法[J].光学学报,2004,24(7):953-956. 被引量:11
  • 2班俊生,邓宇,肖红平.磷酸三丁酯醋酸纤维富集-火焰原子吸收法测定地质样品中痕量金[J].岩矿测试,1996,15(2):141-142. 被引量:7
  • 3王睿.关于支持向量机参数选择方法分析[J].重庆师范大学学报(自然科学版),2007,24(2):36-38. 被引量:39
  • 4薛光.三正辛胺棉富集分离液珠萃取比色法测定地质样品中的金[J].冶金分析,1997,17(2):40-42. 被引量:5
  • 5Rai Nilesh K, Ral A K. LIBS: an effieient approach for the determination o{ Cr in industrial wastewater[J]. J Hazardous Materials, 2008, 150(3): 835-838. 被引量:1
  • 6J B Sirven, B Bousquet, L Canioni, et al. Qualitative and quantitative investigation of chromium polluted soils by lase: induced breakdown spectroscopy combined with neural networks analysis[J]. Analytical and Bioanalytical Chemistry, 2006, 385 (2): 256-262. 被引量:1
  • 7Arnab Sarkar, Vijay M Telmore, Devanathan Alamelu, et al. Laser induced breakdown spectroscopic quantification of platinum group metals in simulated high level nuclear waste [ J ]. J Analytical Atomic Spectrometry, 2009, 24(11) : 1545- 1550. 被引量:1
  • 8Grfigory Bazalgette Courreges-Lacoste, Berit Ahlers, Fernando Rull Pfirez. Combined Raman spectrometer/laser induced breakdown spectrometer for the next ESA mission to Mars[J]. Spectrochimiea Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(4): 1023-1028. 被引量:1
  • 9Vitkova Gabriela, Karel Novotng, Imbomir Prokeg, et al. Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks [J ]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 73 : 1- 6. 被引量:1
  • 10A Koujelev, M Sabsabi, V Motto Ros, et al. Laser induced breakdown spectroscopy with artificial neural network processing for material identification[J]. Planetary and Space Science, 2010, 58(4).- 682-690. 被引量:1

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部