期刊文献+

基于PSO-LightGBM的能源管理系统数据分析

Data Analysis of Energy Management System Based on PSO-LightGBM
下载PDF
导出
摘要 粒子群优化算法(PSO)是一种群体协作优化算法,将其应用到能源管理系统的数据分析中,对于提高能源预测性能具有重要意义。文章采用轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM)模型对能源数据进行详细分析,并通过PSO对LightGBM模型进行优化,提升模型性能。通过对能源数据进行预测,并与多元线性回归(LR)、随机森林(RF)、LightGBM和极限梯度提升(XGB)进行对比实验发现,经过PSO优化后的LightGBM模型的表现更优异,预测效果显著优于其他模型。实验结果显示,决定系数(R^(2))高达91.56%,同时均方误差(MSE)明显降低,进一步验证了PSO-LightGBM模型的优越性。 Particle Swarm Optimization(PSO)is a group collaborative optimization algorithm that is of great significance for improving energy prediction performance when applied to data analysis in energy management systems.In this paper,Light Gradient Boosting Machine(LightGBM)model is used to analyze the energy data in detail,and PSO is used to optimize the LightGBM model to improve the model performance.By predicting the energy data and comparing experiments with multiple Linear Regression(LR),Random Forest(RF),LightGBM and Extreme Gradient Boosting(XGB),it is found that the PSO-optimized LightGBM model performs much better,and the prediction effect is significantly better than the other models.The experimental results show that the coefficient of determination(R^(2))is as high as 91.56%,while the mean square error(MSE)is significantly reduced,which further verifying the superiority of the PSO-LightGBM model.
作者 汪朗 刘勇飞 许麟彰 WANG Lang;LIU Yongfei;XU Linzhang(Guangdong Yue Gang Water Supply Co.,Ltd.,Shenzhen 518021,China)
出处 《软件工程》 2023年第12期33-37,共5页 Software Engineering
关键词 能源管理系统 数据分析 PSO LightGBM energy management system data analysis PSO LightGBM
  • 相关文献

参考文献10

二级参考文献114

  • 1邹俊荣,刘锐,李烨桐,石雪松,陶新民.一种新型智能电力物资仓储信息管理系统[J].黑龙江电力,2020,42(2):125-129. 被引量:4
  • 2胡云鹏,陈焕新,周诚,杨小双,徐荣吉.基于主元分析法的冷水机组传感器故障检测效率分析[J].化工学报,2012,63(S2):85-88. 被引量:16
  • 3Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51 被引量:1
  • 4Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86 被引量:1
  • 5van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002 被引量:1
  • 6Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109 被引量:1
  • 7Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121 被引量:1
  • 8Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89 被引量:1
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998 被引量:1
  • 10Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949 被引量:1

共引文献428

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部