摘要
基于碳化硅(SiC)材料的第三代宽禁带功率器件的出现,推动着电力电子变换器朝着高频化、高功率密度、小型化方向发展。但随着开关速度的提高,电路中寄生参数的影响越来越大,导致桥式变换器存在严重的串扰问题。文中根据SiC金属–氧化物半导体场效应晶体管(metal-oxidesemiconductor field-effect transistor,MOSFET)的工作特性,在RCD(电阻-电容-二极管)电平移位的驱动电路基础上提出一种新型的串扰抑制驱动电路。该电路通过电容和可控低压器件串联,并利用电路自身电压差驱动可控器件,为串扰电流提供一条低阻抗吸收回路,可有效地对串扰问题进行抑制。建立串扰抑制驱动电路的等效电路模型,推导得到该电路结构中电容容值与串扰电压峰值的量化关系,为该电路结构的设计提供理论依据。最后,通过双脉冲实验测试验证所提出电路的有效性及等效模型和理论计算的正确性。实验结果表明,与传统驱动电路相比,提出的串扰抑制驱动电路能够在不同电压与电流工况下,在保证开关速度的前提下,很大程度上抑制串扰尖峰电压。
The appearance of the third generation of wide band gap power devices based on SiC promotes the development of power electronic converters towards much higher frequency,higher power density and smaller volume.However,with the increase of switching speed,the parasitic parameters in the circuit have more and more influence,leading to serious crosstalk problems in bridge converter.According to the characteristics of SiC metal-oxidesemiconductor field-effect transistor(MOSFET),the novel crosstalk suppression driving circuit is proposed based on the drive circuit with RCD(resistor–capacitor–diode)level shift,which provides a low impedance branch for the crosstalk current,and the crosstalk problem can be suppressed effectively.Then,the equivalent model of crosstalk suppression driving circuit is established,and the relationship between the capacitance and the peak value of crosstalk voltage can be obtained,which provides design reference for this circuit.The effectiveness of the proposed driving circuit and the corresponding equivalent model is verified by the double-pulse experimental test.The experimental results show that,compared with the traditional driving circuit,the novel crosstalk suppression driving circuit can suppress the spike voltage induced by the crosstalk process under different voltage and current operating conditions on the premise of ensuring the switching speed.
作者
郑翔
杭丽君
曾庆威
闫东
陈克俭
赖宇帆
曾平良
ZHENG Xiang;HANG Lijun;ZENG Qingwei;YAN Dong;CHEN Kejian;LAI Yufan;ZENG Pingliang(Regional Energy Internet Technology Zhejiang Engineering Laboratory(Hangzhou Dianzi University),Hangzhou 310018,Zhejiang Province,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2023年第20期8038-8047,共10页
Proceedings of the CSEE
基金
国家自然科学基金项目(52377176)
浙江省自然科学基金项目(LO22E070002)。