期刊文献+

插电式混合动力汽车绿色路径规划研究

Research on the Creen Routing of Plug-in Hybrid Electric Vehicle
下载PDF
导出
摘要 为了降低插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)在驾驶过程中的能耗,本文对插电式混合动力汽车绿色路径规划问题(Plug-in Hybrid Electric Vehicle Green Routing Problem,PHEVGRP)进行了研究。基于脉冲耦合神经网络提出了用时间依赖中继神经网络求解时间依赖车辆路径规划问题。基于可实时获取的道路交通状态量建立PHEV能耗计算模型。采用硬参数共享多任务学习建立道路交通状态量的预测模型。结合两个模型,将时间依赖中继神经网络应用于PHEVGRP的求解。采用真实数据进行试验,结果表明所提出的方法能够求得PHEVGRP的基于预测模型的最优解且求解速度优于启发式算法。 In order to reduce the energy consumption of plug-in hybrid electric vehicle(PHEV)during driving,this paper studies the Plug-in Hybrid Electric Vehicle Green Routing Problem(PHEVGRP).A time-dependent relay neural network based on pulse-coupled neural network is proposed to solve time-dependent vehicle routing problem.Based on the road traffic status data that can be acquired in real time,a PHEV energy consumption calculation model is established.Hard parameter sharing multi-task learning is used to establish a prediction model of road traffic status.Combining the two models,the time-dependent relay neural network is applied to the solve PHEVGRP.By using real data for experiments,the result show that the proposed method can obtain the optimal solution of PHEVGRP and is faster than heuristic algorithm.
作者 何智杨 丁烨 HE Zhiyang;DING Ye(Dongguan University of Technology,Dongguan Guangdong 523808,China)
出处 《交通节能与环保》 2023年第5期1-6,共6页 Transport Energy Conservation & Environmental Protection
基金 国家自然科学基金项目(61976051) 国家自然科学基金联合基金重点支持项目(U19A2067)。
关键词 车辆绿色路径规划 多任务学习 脉冲耦合神经网络 插电式混合动力汽车 时间依赖最短路径问题 vehicle green routing muti-task learning pulse-coupled neural network plug-in hybrid electric vehicles time-dependent shortest path problem
  • 相关文献

参考文献3

二级参考文献21

  • 1邹亮,徐建闽.基于遗传算法的动态网络中最短路径问题算法[J].计算机应用,2005,25(4):742-744. 被引量:26
  • 2[1]R Eckhorn,H J Reitboeck,M Arndt,et al.Feature linking via synchronization among distributed assemblies:Simulation of results from cat cortex[J].Neural Comput,1990,2(3):293-307. 被引量:1
  • 3[2]J L John,D Ritter.Observation of periodic waves in a pulse-coupled neural network[J].Opt Lett,1993,18(15),1253-1255. 被引量:1
  • 4[3]J L Johnson,M L Padgett.PCNN Models and Applications[J].IEEE Trans Neural Networks,1999,10(3):480-498. 被引量:1
  • 5[5]G Kuntimad,H S Ranganath.Perfect image segmentation using pulse coupled neural networks[J].IEEE Trans Neural Networks,1999,10(3):591-598. 被引量:1
  • 6[6]H S Ranganath,G Kuntimad.Object detection using pulse coupled neural networks[J].IEEE Trans Neural Networks,1999,10(3):615-620. 被引量:1
  • 7[7]J M Kinser,Foveation by a Pulse-Coupled Neural Network[J].IEEE Trans Neural Networks,1999,10(3):621-625. 被引量:1
  • 8[8]H John Caulfield,Jason M Kinser.Finding shortest path in the shortest time using PCNN's[J].IEEE Trans Neural Networks,1999,10(3):604-606. 被引量:1
  • 9[9]Ephremides,S Verdu.Control and optimization methods in communication network problems[J].IEEE Trans Auto Contr,1989,34:930-942. 被引量:1
  • 10胡腾波,叶建栲.GIS时变权值网络最短路径算法研究[J].计算机与现代化,2008(11):22-24. 被引量:2

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部