期刊文献+

自动波竞争神经网络及其在单源最短路问题中的应用 被引量:6

Autowave-competition neural network and its application to the single-source shortest-paths problem
原文传递
导出
摘要 将竞争机理引入网络的自动波产生与传播过程中,提出自动波竞争神经网络(ACNN)模型,并成功地应用于求解单源最短路问题,给出了基于ACNN的最短路求解算法.与其他神经网络最短路算法相比,基于ACNN的最短路算法具有网络所需的神经元数目少、神经元及网络的结构简单、易于软硬件的实现、以及全并行方式计算等特点,可用于求解非对称赋权图的最短路径树问题,且其计算时间(迭代次数)仅正比于最短路径上的跃点数,与赋权图的复杂度、路径总长、边长的精度、通路总数等因素无关.计算机仿真结果表明该算法的有效性和快速求解能力. In this paper, the competitive mechanism is introduced to the production and propagation processes of the autowave of neural network. The autowave-competition neural network (ACNN) is proposed to successfully resolve the problem of single-source shortest paths (SSSP). The algorithm for shortest paths based on ACNN is presented. Compared with other neural network based approaches, the new algorithm has the following advantages: less number of neurons needed, simple structure of neurons and networks, readily available software and hardware. When ACNN is employed to resolve the shortest path problem, the computational complexity is only related to the hop number of the shortest path, but independent of the complexity of path graph, the number of the existing paths in the graph and the precision of the length of edges. Simulations show that the proposed algorithm is plausible and effictive.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第9期5013-5020,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10605019) 国家高技术研究发展计划(863)(批准号:2006AA03A175)资助的课题.~~
关键词 单源最短路问题 自动波竞争神经网络 脉冲耦合神经网络 single-source shortest path, autowave-competition neural network, pulse-coupled neural network
  • 相关文献

参考文献15

二级参考文献109

  • 1吕金虎.复杂动力网络的数学模型与同步准则[J].系统工程理论与实践,2004,24(4):17-22. 被引量:39
  • 2周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:237
  • 3[1]R Eckhorn,H J Reitboeck,M Arndt,et al.Feature linking via synchronization among distributed assemblies:Simulation of results from cat cortex[J].Neural Comput,1990,2(3):293-307. 被引量:1
  • 4[2]J L John,D Ritter.Observation of periodic waves in a pulse-coupled neural network[J].Opt Lett,1993,18(15),1253-1255. 被引量:1
  • 5[3]J L Johnson,M L Padgett.PCNN Models and Applications[J].IEEE Trans Neural Networks,1999,10(3):480-498. 被引量:1
  • 6[5]G Kuntimad,H S Ranganath.Perfect image segmentation using pulse coupled neural networks[J].IEEE Trans Neural Networks,1999,10(3):591-598. 被引量:1
  • 7[6]H S Ranganath,G Kuntimad.Object detection using pulse coupled neural networks[J].IEEE Trans Neural Networks,1999,10(3):615-620. 被引量:1
  • 8[7]J M Kinser,Foveation by a Pulse-Coupled Neural Network[J].IEEE Trans Neural Networks,1999,10(3):621-625. 被引量:1
  • 9[8]H John Caulfield,Jason M Kinser.Finding shortest path in the shortest time using PCNN's[J].IEEE Trans Neural Networks,1999,10(3):604-606. 被引量:1
  • 10[9]Ephremides,S Verdu.Control and optimization methods in communication network problems[J].IEEE Trans Auto Contr,1989,34:930-942. 被引量:1

共引文献102

同被引文献45

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部