摘要
基于虚拟输出队列(VOQ)缓存的Crossbar交换结构,提出了一种Hopfield神经网络(HNN)控制的信元交换调度方法。通过选取合适的能量函数,并在其中采用一种新的队列优先级函数,实现了信元的高效交换控制。计算机模拟结果表明,该算法可以将吞吐率提高到0.998,信元丢失率大大降低,时延特性也有很大改善。
Based on the Crossbar switching fabrics with virtual output queuing(VOQ) buffers,an effective Hopfield neural network(HNN) based control approach for scheduling cell is proposed, By defining a new queuing priority function, in which priority is proportional to the number of cells in the buffer,and choosing appropriate parameters in energy function, the neural network scheduler can improve the performance of switching fabrics on quality of service(QoS) greatly. Simulation results show that the proposed approach can improve throughput to 0. 998 ,the cell loss rate is decreased near to 0 and the cell delay is reduced.
出处
《光电子.激光》
EI
CAS
CSCD
北大核心
2005年第11期1316-1320,共5页
Journal of Optoelectronics·Laser
基金
天津市自然自然科学基金资助项目(023800811)
国家自然科学基金资助项目(60277022
60477009)
教育部博士点基金资助项目(20030055022)
天津市科技攻关培育资助项目(043100811)
南开大学科技创新基金资助