摘要
磁驱动方法具有无线连接和高安全性的特点,是一种常见的微机器人驱动技术,适用于微流体操作以及医疗微机器人导航等应用。然而,由于微型机器人或被驱动的目标暴露在同一片磁场环境中的,使得选择性地控制单个机器人或多个目标中的某一部分变得具有挑战性。本文回顾了磁场驱动的多微型机器人或多关节微型机器人系统的选择性和独立控制方法的最新进展。这些选择性和独立的控制方法将全局磁场解码为特定配置,用于多个微型机器人的独立驱动。这些方法包括将机器人设计成具有与众不同的物理属性或者在工作空间中的不同位置产生性质各异的磁场。对选定目标的独立控制使多个微型机器人能够有效协作以完成更复杂的操作。在这篇综述中,我们提供了一个独特的视角来解释如何在磁场中操纵单个微型机器人以在小尺度机器人中实现高水平的群体智能,这有助于加速微型机器人技术在现实生活中应用的转化和发展。
Due to the unique advantages of untethered connections and a high level of safety,magnetic actuation is a commonly used technique in microrobotics for propelling microswimmers,manipulating fluidics,and navigating medical devices.However,the microrobots or actuated targets are exposed to identical and homogeneous driving magnetic fields,which makes it challenging to selectively control a single robot or a specific group among multiple targets.This paper reviews recent advances in selective and independent control for multi-microrobot or multi-joint microrobot systems driven by magnetic fields.These selective and independent control approaches decode the global magnetic field into specific configurations for the individualized actuation of multiple microrobots.The methods include applying distinct properties for each microrobot or creating heterogeneous magnetic fields at different locations.Independent control of the selected targets enables the effective cooperation of multiple microrobots to accomplish more complicated operations.In this review,we provide a unique perspective to explain how to manipulate individual microrobots to achieve a high level of group intelligence on a small scale,which could help accelerate the translational development of microrobotic technology for real-life applications.
出处
《Engineering》
SCIE
EI
CAS
CSCD
2023年第5期21-38,I0001,共19页
工程(英文)
基金
supported by the Research Grant Council(RGC)of Hong Kong(11212321,11217922,and ECS-21212720)
Basic and Applied Basic Research Fund of Guangdong,China
Science,Technology and Innovation Committee of Shenzhen(SGDX20210823104001011)。