期刊文献+

城市微循环公交潜在需求挖掘与线路设计算法 被引量:1

Urban Community Shuttle Demand Mining and Route Design Method
原文传递
导出
摘要 为满足城市居民“最后一公里”出行需求,创新提出城市微循环公交潜在需求挖掘与线路设计算法。使用加权DBSCAN对共享单车、出租车、网约车等非公交出行OD进行聚类,挖掘出微循环线路潜在需求集中区域;通过分析历史出行数据揭示公交与共享单车竞争关系,构建以行程距离和公交相对共享单车行程时间优势为影响因素的公交客流估计模型,进而构建考虑客流收入和运营成本的线路收益估算模型,使用深度优先算法获取区内所有合理线路,从中选取收益最大线路作为推荐微循环线路。在广州市主城区范围内挖掘得到若干微循环公交潜在需求集聚区域,并选取其中典型区域计算微循环推荐线路,分析结果表明,推荐线路具备较强合理性。 To serve the"last mile"travel demand,a community shuttle potential demand extraction method and a recommended route design method are proposed.First,a weighted DBSCAN is applied to cluster the non-transit OD pairs and acquire regions where the need for a community bus route is substantial.Then,the competitive relationship between buses and shared bikes is revealed by analyzing historical trip data.A community bus OD demand estimation model with travel distance and relative travel time as factors is built.A route profit estimation model considering fee income and operation cost is proposed.A customized depth-first search is used to search for all reasonable routes.The route with the highest profit is chosen for recommendation.The proposed methods are applied to the main area of Guangzhou,and several potential high-demand areas are discovered.One typical area is selected to perform the shuttle route design method,the results show that the recommended route is highly reasonable.
作者 罗建平 黄子敬 张燕忠 LUO Jianping;HUANG Zijing;ZHANG Yanzhong(Guangdong Province Urban Intelligent Transportation Internet of Things Engineering Technology Research Center,Guangzhou 510000,China;Guangzhou Jiaoxintou Technology Co.,Ltd,Guangzhou 510000,China)
出处 《综合运输》 2023年第9期102-109,共8页 China Transportation Review
基金 广东省交通运输行业重点科技项目(2021-QD-012) 广州市科技计划项目(202206010056)。
关键词 城市交通 城市公交 微循环公交 数据挖掘 公交线路设计 Urban transportation Urban transit Community shuttle Data mining Transit route design
  • 相关文献

参考文献8

二级参考文献32

  • 1Chang S K, Schonfeld P M. Multiple period optimization of bus transit systems [ J ]. Transportation Research, 1991, 25B: 453-478. 被引量:1
  • 2Chien S, Schonfeld P M. Optimization of grid transit system in heterogeneous urban environment [ J ]. Journal of Transportation Engineering, 1997,123 ( 1 ) : 28 -35. 被引量:1
  • 3Chien S I, Spasovic L N, Elefsiniotis S S, et al. Evaluation of feeder bus systems with probabilistic time-varying demands and non-additive time costs [ J ]. Transportation Research Record, 2001, 1760: 47-55. 被引量:1
  • 4Chang S K J, Lee C J. Welfare comparison of fixed- and flexible-route bus systems [ J ]. Transportation Research Record, 1993, 1390: 16-22. 被引量:1
  • 5Chang S K, Yu W J. Comparison of subsidized fixed- and flexible-route bus system [ J ]. Transportation Research Record, 1996, 1557:15 - 20. 被引量:1
  • 6Chien S. Optimization of headway, vehicle size and route choice for minimum cost feeder service [ J ]. Transportation Planning and Technology, 2005, 28: 359-380. 被引量:1
  • 7Chien S, Yang Z, Hou E. Genetic algorithm approach for transit route planning and design [ J]. Journal of Transportation Engineering, 2001, 127: 200-207. 被引量:1
  • 8Ceder A. Stepwise muhi-criteria and multi-strategy design of public transit shuttles [ J ]. Journal of Multi- Criteria Decision Analysis, 2009, 16: 21-38. 被引量:1
  • 9Fan W, Machemehl R B. Optimal transit route network design problem with variable transit demand: genetic algorithm approach [ J ]. Journal of Transportation Engineering, 2006, 132( 1 ) : 40-51. 被引量:1
  • 10Shrivastava P, Mahony M O. A model for development of optimized feeder routes and coordinated schedules-A genetic algorithms approach [ J 1. Transport Policy, 2006, 13 : 413-425. 被引量:1

共引文献42

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部