摘要
[目的/意义]随着生成式人工智能的快速发展和广泛应用,信息空间结构也随之发生深刻的变革。以往以用户生成内容(UGC)为主的信息空间开始逐渐被生成式人工智能生成内容(AIGC)所影响,生成式人工智能治理的重要性愈发凸显。文章旨在从主题视角比较AIGC与UGC,揭示两者在内容与结构特征上的差异,并为生成式人工智能治理提供创新参考。[方法/过程]收集了金融、法律、医疗和开放问答4个领域的多个在线平台上的问题和用户回答,并借助gpt-turbo-3.5模型生成每个问题的人工智能回答,最终构建了包含65260条问答数据的语料集,并采用BERTopic主题模型分别对AIGC与UGC进行主题提取,并从主题间关系、主题与文档关系以及主题与主题词关系3个角度对两者进行综合对比。[结果/结论]研究结果揭示了AIGC和UGC在主题分布、主题内文档一致性和主题词权重结构等方面的差异。通过深入了解两者之间的特征差异,能够更好地观察生成式人工智能的行为规律,并为AIGC的治理策略完善提供参考。
[Purpose/significance]With the rapid development and wide application of generative AI,the structure of the information space undergoes a profound change.The previous information space dominated by UGC begins to be gradually influenced by AIGC,and the importance of generative AI governance becomes more and more prominent.The purpose of this paper is to compare AIGC and UGC from a thematic perspective,to reveal the differences between the two in terms of content and structural features,and to provide innovative references for generative AI governance.[Method/process]In this paper,questions and user responses on multiple online platforms in four domains,including finance,law,healthcare,and open Q&A,are collected,and AI responses for each question are generated with the help of the gpt-turbo-3.5 model,and a corpus containing 65260 Q&A data is finally constructed.The BERTopic topic model is employed to extract topics from both AIGC and UGC datasets,and a comprehensive comparison is conducted between the two datasets from three perspectives:inter-topic relationships,topic-document relationships,and topic-subject term relationships.[Result/conclusion]The results of the study reveal the differences between AIGC and UGC in terms of topic distribution,document consistency within topics,and topic word weight structure.By gaining a deeper understanding of the characteristic differences between the two,the behavioral laws of generative AI can be better observed,and references for the improvement of the governance strategy of AIGC can be provided.
出处
《情报理论与实践》
北大核心
2023年第10期200-207,199,共9页
Information Studies:Theory & Application