期刊文献+

正则M-矩阵的平方根

On the Square Root of Regular M-matrices
下载PDF
导出
摘要 矩阵平方根在数学的许多领域中具有广泛的应用.文章利用M-矩阵的性质和二次矩阵方程理论,研究了正则M-矩阵的平方根,证明了正则M-矩阵的平方根总是存在的,而且该平方根仍是一个正则的M-矩阵.最后通过数值例子对本文的理论和方法进行了验证. The square root of matrix is widely used in many fields of mathematics.Based on the properties of M-matrix and quadratic matrix equation,we study the square root of regular M-matrices,and prove that the square root of a regular M-matrix exists,and is still a regular M-matrix.In addition,an iterative method is proposed to calculate the square root and the corresponding convergence analysis is given.Numerical examples are given to illustrate the theory and the method in this paper.
作者 关晋瑞 王志欣 李宣达 GUAN Jinrui;WANG Zhixin;LI Xuanda(School of Mathematics and Statistics,Taiyuan Normal University,Shanxi Jinzhong 030619,China;School of Science,Northeast University,Liaoning Shenyang 110819,China)
出处 《太原师范学院学报(自然科学版)》 2023年第3期1-4,32,共5页 Journal of Taiyuan Normal University:Natural Science Edition
基金 国家自然科学基金(12001395) 山西省科技创新人才团队专项资助(202204051002018) 太原师范学院研究生教育创新项目(SYYJSYC-2314).
关键词 矩阵平方根 正则M-矩阵 迭代法 square root of matrix regular M-matrix iterative method
  • 相关文献

参考文献7

二级参考文献69

  • 1黄德超.2^k阶r-循环矩阵开平方的快速算法[J].杭州师范学院学报(自然科学版),2004,3(1):17-21. 被引量:1
  • 2张琳,王学平.模糊关系R的σ分解[J].四川师范大学学报(自然科学版),2007,30(2):151-153. 被引量:6
  • 3Bjorck A.and Hammarling S.A schur method for the square root of matrix[J], Linear Algebra and Its Applications, 1983,52/53,127 - 140. 被引量:1
  • 4Higham J.N. Computing real square roots of a real matrix[J] ,Linear Algebra Appl., 1987,405- 430. 被引量:1
  • 5Davies P.L.Higham N.J.A schur-parlett algorithm for computing matrix functions[J], SIAM J. Matrix Anal. Appl., 2003,464-485. 被引量:1
  • 6Golub G. H. Loan C. F. Matrix Computations[ M], Third Edition, Johns Hopkins University Press, 1996. 被引量:1
  • 7SCHMITT B A.On algebraic approximation for the matrix exponential in singularly perturbed bounded value problems[J].SIAM J Numer Anal,1990,27(1):51-66. 被引量:1
  • 8HASAN M A,HASAN A A,RAHMAN S.Fixed point iterations for computing square roots and the matrix sign function of complex matrices[C] //Proceedings of the 39th IEEE Conference on Decision and control,Sydney,2000:4253-4258. 被引量:1
  • 9DIECI L,MORINI B,PAPINI A.Computational techniques for real logarithms of matrices[J].SIAM J Matrix Anal Appl,1996,17(3):570-593. 被引量:1
  • 10CROSS G W,LANCASTER P.Square roots of complex matrices[J].Linear and Multilinear Algebra,1974,1(4):289-293. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部