期刊文献+

基于TSNS-RAE的多模态过程故障检测

Multi-Modal Process Fault Detection Based on TSNS-RAE
下载PDF
导出
摘要 根据多模态工业生产过程的数据特点,提出基于时空近邻标准化和鲁棒自编码器(TSNS-RAE)的故障检测方法;TSNS处理数据时同时考虑了样本的时间近邻和空间近邻,可以消除数据动态性和多模态特征;相比于普通的自编码器,鲁棒自编码器提升了模型的抗噪性和鲁棒性,具有更好的提取非线性特征的能力;TSNS-RAE模型将原始数据空间分成模型空间和残差空间两部分,选择残差空间的SPE统计量作为监控统计量,通过数值案例和青霉素实验来验证TSNS-RAE的可行性。 Aiming at the characteristics of multimodal industrial processes,A fault detection method based on time-space nearest neighborhood standardization and robust autoencoder(TSNS-RAE)is proposed.The TSNS processes the data by considering both temporal and spatial neighbors of samples,thus eliminating the data dynamics and multimodal features.Compared with ordinary autoencoders,robust autoencoders improve the noise resistance and robustness of the model,and have better ability to extract the nonlinear features.The TSNS-RAE model divides the original data space into the model space and residual space,and the SPE statistics of residual space are selected as monitoring statistics.Numerical cases and penicillin experiments are used to verify the feasibility of the TSNS-RAE.
作者 郭小萍 李志远 李元 GUO Xiaoping;LI Zhiyuan;LI Yuan(School of Information Engineering、Shen yang University of Chemical Technology,Shenyang 110142,China)
出处 《计算机测量与控制》 2023年第9期22-28,共7页 Computer Measurement &Control
基金 国家自然科学基金资助项目(61490701,61673279) 辽宁省教育厅重点实验室项目(LJ2020021)。
关键词 多模态 故障检测 鲁棒自编码器 时空近邻标准化 青霉素生产过程 multimode fault detection robust autoEncoder TSNS penicilin production
  • 相关文献

参考文献12

二级参考文献83

  • 1于乃功,阮晓钢.细胞自动机及其在菌体生长建模仿真中的应用[J].系统仿真学报,2004,16(12):2651-2654. 被引量:10
  • 2邓晓刚,田学民.基于核规范变量分析的非线性故障诊断方法[J].控制与决策,2006,21(10):1109-1113. 被引量:5
  • 3SIRONI S, CAPELLI L, C'ENTOLA P, et al. Development of a system for the continuous monitoring of odours from a composting plant: Focus on training, data processing and results validation methods[ J]. Sensors and Actuators B, 2007,1 : 1-11. 被引量:1
  • 4CHING P C, SO H C, WU S Q. On wavelet denoising and its applications to time delay estimation [ J ]. IEEE Trans. on Signal Processing, 1999,47 (10) :2879-2882. 被引量:1
  • 5LISBOA P J, TAKTAK A F G. The use of artificial neural networks in decision support in cancer: A systematic review[ J]. Neural Networks, 2006,19:408-415. 被引量:1
  • 6ZHANG J, MARTIN E B, MORRIS A J. Process monitoring using non-linear statistical techniques[ J]. Chemical Engineering Journal, 1997,67 ( 3 ) : 181-189. 被引量:1
  • 7WANG G Q, SUN Y AN, DING Q ZH, et al. Estimation of source spectra profiles and simultaneous determination of polycomponent in mixtures from ultraviolet spectra data using kernel independent component analysis and support vector regression [ J ]. Analytica Chimica Acta, 2007, 594 : 101-106. 被引量:1
  • 8ZHANG Y W. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM [ J]. Chemical Engineering Science, 2009,64 : 801-811. 被引量:1
  • 9DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage [ J ]. Biometrika, 1994,81 : 425 -455. 被引量:1
  • 10DONOHO D L. Denoising by soft-thresholding [ J]. IEEE Trans. Inform. Theory, 1995,41 :613-627. 被引量:1

共引文献206

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部