期刊文献+

基于预测特征分析的动态过程状态监测方法

Dynamic Process Monitoring Method Based on Predictable Feature Analysis
下载PDF
导出
摘要 动态潜变量模型在多元状态监测中得到了广泛应用,从潜变量可预测性最大化出发,提出了一种基于预测特征分析(PFA)的状态监测方法。PFA采用无监督建模的形式,基于预测误差最小化计算全局最优可预测特征。进一步,构建T2和SPE统计量,对动态过程进行故障检测。以TE过程为对象,构建PFA模型,与典型的统计分析方法进行对比实验,结果表明,提出的方法能够准确高效地检测出故障,具有较高的可靠性和优越性。 The dynamic latent variable model has been widely used multivariate process monitoring.From the perspective of maximizing the predictability,this paper establishes a latent variable autoregressive model for process monitoring.The PFA algorithm adopts unsupervised model to extract optimal predictive features from the input signals,T2 and SPE statistics are further constructed to realize the monitoring of dynamic processes.Through experiments with typical methods,the proposed PFA based dynamic process monitoring method has superior performance and high reliability.
出处 《工业控制计算机》 2023年第7期5-6,9,共3页 Industrial Control Computer
关键词 动态过程 故障监测 主成分分析 预测特征分析 dynamic process fault detection principal component analysis predictable feature analysis
  • 相关文献

参考文献4

二级参考文献83

  • 1Isermann R, Balle E Trends in the application of model based fault detection and diagnosis of technical processes[J]. Control Engineering Practice, 1997, 5(5): 709-719. 被引量:1
  • 2Parthasarathy K, Jay H L. Diagnostic tools for multivariable model-based control system[J]. Industrial and Engineering Chemistry Research, 1997, 36(7): 2725- 2738. 被引量:1
  • 3Anne Raich, Ali Cinar. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes [J]. AIChE J, 1996, 42(4): 995-1009. 被引量:1
  • 4Jie Chen, Ron J. Patton. Robust model-based fault diagnosis for dynamic systems[M]. Boston: Kluwer Academic Publishers, 1999. 被引量:1
  • 5Bagheri F, Khaloozaded H, Abbaszadeh K. Stator fault detection in induction machines by parameter estimation using adaptive Kalman filter[C]. Proc of 2007 Mediterranean Conf on Control and Automation. Piscataway: IEEE, 2007: 1-6. 被引量:1
  • 6Li L L, Zhou D H. Fast and robust fault diagnosis for a class of nonlinear system: Detectability analysis[J]. Computers and Chemical Engineering, 2004, 28(12): 2635-2646. 被引量:1
  • 7Janos Gertler. Analytical redundancy methods in fault detection and isolation[C]. Proc of IFAC/ IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes. Baden-Baden: Pergamon Press, 1991. 被引量:1
  • 8Iri M, Aoki K, O'Shima E, et al. An algorithm for diagnosis of system failures in the chemical process[J]. Computers and Chemical Engineering, 1979, 3(1/2/3/4): 489-493. 被引量:1
  • 9Wu J D, Wang Y H, Mingsian R B. Development of an expert system for fault diagnosis in scooter engine platform using fuzzy-logic inference[J]. Expert Systems with Applicatio, 2007, 33(4): 1063-1075. 被引量:1
  • 10Venkatasubramanian V, Rengaswamy R, Yin K, et at. A review of process fault detection and diagnosis: Part I[J]. Computers and Chemical Engineering, 2003, 27(3): 293- 311. 被引量:1

共引文献267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部