期刊文献+

Lennard-Jones简单流体的自扩散系数与密度的依赖性研究

Density Dependence of the Self-Diffusion Coefficient of Lennard-Jones Simple Fluid
下载PDF
导出
摘要 基于平衡分子动力学模拟(EMD)的方法计算了Lennard-Jones(LJ)流体的自扩散系数。结合维里定理和能量均分定理分析了体系温度和密度对扩散的影响,并通过分子动力学模拟进行了验证。研究结果表明:原子的有效直径随温度的升高而减小,进而使自扩散系数与温度的2/3次方成正比;在中等温度部分,扩散系数大体上随密度的升高而减小。本文给出了流体自扩散系数与密度依赖关系的具体函数形式,这一函数在约化温度高于1.33,约化分子数密度为0.1194~1.1942的范围内可准确描述LJ流体的自扩散行为;如果约化密度大于1.298,原子扩散行为停止,LJ流体发生玻璃化改变。 The self-diffusion coefficient of Lennard-Jones(LJ)fluid was calculated based on the equilibrium molecular dynamics(EMD)simulation method.The effects of temperature and density on diffusion were analyzed by combining Virial theorem and energy equipartition theorem,and the theoretical analysis was verified by simulation results.The results indicate that the effective diameter of fluid particle decreases as the temperature increases,so the self-diffusion coefficient is proportional to the two-thirds power of the temperature.In the middle temperature,the diffusion coefficient decreases with the increase of density.In this paper,the specific function form of the dependence between fluid self-diffusion coefficient and density is given.This formula can accurately describe the self-diffusion behavior of LJ fluid when the reduced temperature is greater than 1.33 and the reduced number density in the range from 0.1194 to 1.1942.If the reduced density is greater than 1.298,the atomic diffusion behavior stops and the LJ fluid undergoes a glass transition.
作者 赵晨辰 杨晓峰 ZHAO Chenchen;YANG Xiaofeng(School of Semiconductor and Physics,North University of China,Taiyuan 030051,China)
出处 《中北大学学报(自然科学版)》 CAS 2023年第4期346-351,共6页 Journal of North University of China(Natural Science Edition)
关键词 Enskog理论 Lennard-Jones流体 自扩散系数 分子动力学 Enskog theory Lennard-Jones fluid self-diffusion coefficient molecular dynamics
  • 相关文献

二级参考文献41

  • 1Allen M P and Tildesley D J 1990 Computer Simulation of Liquids (Oxford: Clarendon Press) p. 57. 被引量:1
  • 2Dunweg B and Kremer K 1991 Phys. Rev. Lett. 66 2996. 被引量:1
  • 3Dunweg B and Kremer K 1993 J. Chem. Phys. 99 6983. 被引量:1
  • 4Yeh I C and Hummer G 2004 J. Phys. Chem. B 108 15873. 被引量:1
  • 5Smith P E and van Gunsteren W F 1994 J. Mol. Biol. 236 629. 被引量:1
  • 6Debendetti P G and Reid R C 1986 AIChE J. 32 2034. 被引量:1
  • 7Boon J P and Yip S 1980 Molecular Hydrodynamics (New York: McGraw-Hill) pp. 105-144. 被引量:1
  • 8Kataoka Y and Fujita M 1995 Bull. Chem. Soc. Jpn. 68 152. 被引量:1
  • 9Mecke M, Miiller A, Winkelmann J, Vrabec J, Fischer J, Span R and Wagner W 1996 Int. J. Thermophys. 17 391. 被引量:1
  • 10Michels J P J and Trappeniers N J 1975 Chem. Phys. Lett. 33 195. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部