期刊文献+

Critical anomaly and finite size scaling of the self-diffusion coefficient for Lennard Jones fluids by non-equilibrium molecular dynamic simulation 被引量:4

Critical anomaly and finite size scaling of the self-diffusion coefficient for Lennard Jones fluids by non-equilibrium molecular dynamic simulation
下载PDF
导出
摘要 We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature. We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期362-367,共6页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 51076128) the National High Technology Research and Development Program of China (Grant No. 2009AA05Z107)
关键词 self-diffusion coefficient non-equilibrium molecular dynamic simulation Lennard Jonesfluid critical dynamics self-diffusion coefficient, non-equilibrium molecular dynamic simulation, Lennard Jonesfluid, critical dynamics
  • 相关文献

参考文献41

  • 1Allen M P and Tildesley D J 1990 Computer Simulation of Liquids (Oxford: Clarendon Press) p. 57. 被引量:1
  • 2Dunweg B and Kremer K 1991 Phys. Rev. Lett. 66 2996. 被引量:1
  • 3Dunweg B and Kremer K 1993 J. Chem. Phys. 99 6983. 被引量:1
  • 4Yeh I C and Hummer G 2004 J. Phys. Chem. B 108 15873. 被引量:1
  • 5Smith P E and van Gunsteren W F 1994 J. Mol. Biol. 236 629. 被引量:1
  • 6Debendetti P G and Reid R C 1986 AIChE J. 32 2034. 被引量:1
  • 7Boon J P and Yip S 1980 Molecular Hydrodynamics (New York: McGraw-Hill) pp. 105-144. 被引量:1
  • 8Kataoka Y and Fujita M 1995 Bull. Chem. Soc. Jpn. 68 152. 被引量:1
  • 9Mecke M, Miiller A, Winkelmann J, Vrabec J, Fischer J, Span R and Wagner W 1996 Int. J. Thermophys. 17 391. 被引量:1
  • 10Michels J P J and Trappeniers N J 1975 Chem. Phys. Lett. 33 195. 被引量:1

同被引文献44

  • 1Wen-Long Jiang,Yong Deng,Bin Yang,Da-Chun Liu,Yong-Nian Dai,Bao-Qiang Xu.Application of vacuum distillation in refining crude indium[J].Rare Metals,2013,32(6):627-631. 被引量:10
  • 2Kim Y C,Fisher M E.Fluid critical points from simulation:The Bruce-wilding method and Yang-Yang anomalies[J].Journal of Physical Chemistry B,2004,108(21):6750-6759. 被引量:1
  • 3Mermin N D.Lattice gas with short-range pair interactionsand a singular coexistence-curve diameter[J].Physical Review Letters,1971,26(16):957-959. 被引量:1
  • 4Fisher M E,Orkoulas G.The Yang-Yang anomaly in fluidcriticalitys Experiment and scaling theory[J].Physical Review Letters,2000,85(4):696-699. 被引量:1
  • 5Kim Y C,Fisher M E,Orkoulas G.Asymmetric fluid criti-cality:I.Scaling with pressure mixing[J].Physical Review E,2003,67(6):061506-1-061506-21. 被引量:1
  • 6Kim Y C,Fisher M E.Asymmetric fluid criticality:II.Finite-size scaling for simulations[J].Physical Review E,2003,68(4):041506-1-041506-23. 被引量:1
  • 7Kim Y C,Fisher M E,Luijten L.Precise simulation of near-critical fluid coexistence[J].Physical Review Letters,2003,91(6):065701-1-065701-4. 被引量:1
  • 8Kim Y C,Fisher M E.Fluid coexistence close to criticality:Scaling algorithms for precise simulation[J].ComputerPhysics Communications, 2005,169:295-300. 被引量:1
  • 9Kim Y C.Yang-Yang anomalies and coexistence diameters:Simulation of asymmetric fluids[J].Physical Review E,2005,71(5):051501-1-051501-15. 被引量:1
  • 10Li Liyan,Tang Kaiwei,Wu Liang,et al.Monte Carlo simu-lation of vapor-liquid equilibrium and critical asymmetry ofsquare-well dimer fluid[J].Journal of Chemical Physics,2012,136(21):214508-1-214508-7. 被引量:1

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部