期刊文献+

基于LDA-LSTM模型在线课程评论情感分析研究 被引量:2

Research on Sentiment Analysis of Online Course Reviews Based on LDA-LSTM Model
下载PDF
导出
摘要 终身化学习背景下,MOOC作为普及性在线学习形式已受到学术界的日益关注。同时,MOOC课程质量与学习者满意度问题亟待解决。研究基于理性选择理论与联通主义理论构建LDA-LSTM深度主题情感分析模型,进而挖掘学习者理性因素与情感极性。实验结果表明,学习者考虑的因素主要具备全面性与多样性的特点;学习者对教师与学习效果普遍给予肯定评价,较少负面评价则针对教师授课风格、课程资源与平台服务质量。研究据此给出了建议策略。 Under the background of lifelong learning,MOOC,as a popular form of online learning,has attracted increasing attention from the academic community.Meanwhile,the problems of the quality of MOOC courses and the satisfaction of learners need to be addressed urgently.Based on the theory of rational choice and the theory of connectivism,this paper constructs the LDA-LSTM deep topic sentiment analysis model,and then mines rational factors and sentiment polarity of learners.The experimental results show that the factors considered by learners are comprehensive and diverse.Learners generally give positive evaluation to teachers and learning effects,and less negative evaluation to teachers'teaching style,course resources and platform service quality.According to this,the research gives some suggested strategies.
作者 梁梓煜 朱丽佳 陈俊 常国将 LIANG Ziyu;ZHU Lijia;CHEN Jun;CHANG Guojiang(College of Education,Guizhou Normal University,Guiyang 550025,China;College of Foreign Languages,Guizhou Normal University,Guiyang 550025,China)
出处 《现代信息科技》 2023年第16期79-83,88,共6页 Modern Information Technology
基金 贵州省高校人文社会科学研究项目(2023GZGXRW146)。
关键词 在线课程评论 LDA-LSTM模型 主题挖掘 情感分析 深度学习 online course comment LDA-LSTM model topic mining sentiment analysis Deep Learning
  • 相关文献

参考文献8

二级参考文献142

共引文献707

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部