期刊文献+

sEMG多特征值融合的神经网络下肢关节角度预测 被引量:1

sEMG Multi-Characteristic Combined Neural Network Lower Limb Joint Angle Forecast
下载PDF
导出
摘要 作为下肢康复外骨骼机器人的核心,人体意图识别一直是国内外最热门的研究课题。文章针对人体意图识别中下肢关节角度预测精度较低的问题,提出了一种基于表面肌电信号的多特征值融合的遗传算法(Genetic Algorithm,GA)优化BP神经网络对下肢关节角度进行预测。利用表面肌电采集设备采集人体下肢表面肌电信号,对信号进行处理并提取多个特征值,将提取的多个特征值作为神经网络的输入,同时将采集到的人体髋、膝、踝关节角度作为输出。实验结果显示,与传统BP神经网络结果相比,遗传算法优化BP神经网络具有更高的预测精度,且预测结果更加稳定。 As the core of lower limb rehabilitation exoskeleton robots,human intent recognition has always been the hottest research topic at home and abroad.In the paper,aiming at the problem of low accuracy of lower limb joint angle prediction in human intent recognition,a genetic algorithm(GA)based on multi-feature value fusion of surface EMG signals is proposed to optimize the BP neural network to predict the angle of lower limb joint.The surface EMG acquisition device is used to collect the surface EMG signal of the human lower limb,process the signal and extract multiple feature values,take the extracted multiple feature values as the input of the neural network,and take the collected human hip,knee and ankle angles as output.The experimental results show that compared with the traditional BP neural network results,the genetic algorithm optimizes the BP neural network with higher prediction accuracy and more stable prediction results.
作者 邓福铃 DENG Fuling(Chongqing Jiaotong University,Chongqing 400060,China)
机构地区 重庆交通大学
出处 《传感器世界》 2023年第6期16-20,37,共6页 Sensor World
关键词 表面肌电信号 多特征值融合 GA-BP神经网络 关节角度 sEMG multi-characteristic value fusion GA-BP joint angle
  • 相关文献

参考文献6

二级参考文献112

  • 1吕广明,孙立宁,陆念力.基于BP网络的康复机器人的智能控制技术[J].石油大学学报(自然科学版),2005,29(5):87-90. 被引量:3
  • 2李卓,谢斌,罗春,王荣丽,王宁华.脑卒中患者坐位及站立位胫骨前肌和腓肠肌表面肌电图信号特征研究[J].中国康复理论与实践,2007,13(12):1147-1149. 被引量:23
  • 3Goodrich M A, Schultz A C. Human-robot interaction: a survey. Foundations and Trends in Human-Computer Inter- action, 2007, 1(3): 203-275. 被引量:1
  • 4Nam Y, Koo B, Cichocki A, Choi S. GOM-face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control. IEEE Transactions on BiomedicM Engineering, 2014, 61(2): 453-462. 被引量:1
  • 5Artemiadis P. EMG-based robot control interfaces: past present and future. Advances in Robotics ~z Automation 2012, 1(2): 1-3. 被引量:1
  • 6Ngeo J G, Tamei T, Shibata T. Continuous and simul- taneous estimation of finger kinematics using inputs from an EMCl-to-muscle activation model. Journal of NeuroEngi- neering and Rehabilitation, 2014, 11:122. 被引量:1
  • 7Chowdhury R H, Reaz M B I, Ali M A B, Bakar A A A, Chellappan K, Chang T G. Surface electromyography sig- nal processing and classification techniques. Sensors, 2013, 13(9): 12431-12466. 被引量:1
  • 8Ahsan M R, Ibrahimy M I, Khalifa O O. EMG signal classifi- cation for human computer interaction: a review. European Journal of Scientific Research, 2009, 33(3): 480-501. 被引量:1
  • 9Ison M, Artemiadis P. Multi-directional impedance control with electromyography for compliant human-robot interac- tion. In: Proceedings of the 2015 International Conference on Rehabilitation Robotics (ICORR). Singapore: IEEE, 2015. 416-421. 被引量:1
  • 10Farina D, Merletti R, Enolau R M. The extraction of neural strategies from the surface EMG. Journal of Applied Phys- iology, 2004, 96(4): 1486-1495. 被引量:1

共引文献147

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部