期刊文献+

基于LMS-随机森林的肌电信号下肢动作快速分类 被引量:18

Rapid classification of lower limb movements of EMG signals based on LMS-random forest
下载PDF
导出
摘要 表面肌电信号(sEMG)发生于动作之前,可以在动作活动时提前预测其活动意愿,但传统的分类方法往往存在实时性与准确性难以兼容的问题。为了使得肌电信号能够更好地运用于机器设备,提出一种LMS-随机森林肌电信号快速动作分类方法,对下肢动作屈髋屈膝、屈髋伸踝、屈膝屈踝、伸膝伸踝进行动作分类与模式识别。相比于传统的分类算法,研究只需采集动作前120 ms数据进行分类,利用LMS进行滤波,并且给原始数据赋予相应权重,其权重代表数据特征的重要程度,改善了传统表面肌电信号分类的实时性不足问题,为人体与外骨骼设备融合提供了解决方案。实验结果表明,相比于传统的支持向量机,反向传播神经网络等算法中,算法耗时间较短,速度为线性围栏法的7.8倍,具备较高的准确度与稳定性,识别精度为97.3%。 Surface electromyography(sEMG) occurs before the action. When the action is active, its willingness can be predicted in advance. However, traditional classification methods usually face problems that real-time and accuracy are difficult to be compatible. To make the EMG signal better applied to the machine and equipment, this paper proposes a fast action classification method for the LMS-random forest EMG signal. It can classify and identify knee bend, hip bend, knee bend, knee bend and knee stretch. Compared with the traditional classification algorithm, this study only needs to collect the data before 120 ms for classification. LMS is used to filter and assign corresponding weight to the original data. Its weight represents the importance of data features. In this way, the classification of traditional surface EMG signals can be improved. The lack of real-time performance provides a solution for the integration of human and exoskeleton devices. Compared with the traditional support vector machine, back propagation neural network and other algorithms, experimental results show that the proposed algorithm takes less time and the speed is 7.8 times that of the linear fence method. It has high accuracy and stability, and the recognition accuracy is 97.3%.
作者 石欣 范智瑞 张杰毅 徐淑源 蔡建宁 Shi Xin;Fan Zhirui;Zhang Jieyi;Xu Shuyuan;Cai Jianning(School of Automation,Chongqing University,Chongqing 400044,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第6期218-224,共7页 Chinese Journal of Scientific Instrument
基金 国防科技创新特区(18-H863-31-ZD-002-002-05)项目资助
关键词 表面肌电信号 特征提取 肌肉选取 随机森林 运动信号识别 surface electromyography feature extraction muscle selection random forest motion signal recognition
  • 相关文献

参考文献8

二级参考文献138

共引文献154

同被引文献139

引证文献18

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部