期刊文献+

基于改进粒子群算法的线缆路径规划方法研究 被引量:2

Research on Cable Path Planning Method Based on Improved PSO Algorithm
下载PDF
导出
摘要 针对复杂机电产品布线路径规划过程中存在的效率较低、可应用性差等问题,提出一种改进粒子群算法,使用栅格法对布线空间进行划分,对障碍物建模并进行方向包围盒处理。为了避免算法在迭代过程中陷入局部最优,引入非线性逐渐递减的惯性权重与异步变化的学习因子,并且将贴壁约束加入到路径规划的过程中,保证线缆在敷设时路径的合理性。最后在仿真试验中,与标准粒子群算法进行对比,验证了改进后算法的合理性与可行性。 To address the problems of low efficiency and poor applicability in the process of wiring path planning for complex electromechanical products,an improved particle swarm optimization algorithm was proposed in which the raster method was used to partition the wiring space and model the obstacles.In order to avoid the algorithm falling into local optimality during iteration,non-linear gradually decreasing inertia weights with asynchronously varying learning factors were introduced,and wall-fitting constraints were added to the path planning process to ensure a reasonable path for the cables when they were laid.Finally,the improved algorithm was compared with the basic particle swarm optimization algorithm in simulation tests to verify the reasonableness and feasibility of the improved algorithm.
作者 屈力刚 蒋帅 杨野光 李静 QU Ligang;JIANG Shuai;YANG Yeguang;LI Jing(School of Mechanical and Electrical Engineering,Shenyang Aerospace University,Shenyang Liaoning 110136,China)
出处 《机床与液压》 北大核心 2023年第15期173-177,共5页 Machine Tool & Hydraulics
基金 辽宁省兴辽人才基金(XLYC2002086)。
关键词 自动布线 路径规划 改进粒子群算法 贴壁约束规则 Automatic wiring Path planning Improved PSO Wall-fitting constraint rules
  • 相关文献

参考文献8

二级参考文献48

  • 1黄文奇,许如初.Two personification strategies for solving circles packing problem[J].Science China(Technological Sciences),1999,42(6):595-602. 被引量:12
  • 2刘检华,万毕乐,宁汝新.虚拟环境下基于离散控制点的线缆装配规划技术[J].机械工程学报,2006,42(8):125-130. 被引量:34
  • 3LEE S, PARK J. Neural computation for collision-free path planning[J]. Journal of Intelligent Manufacturing, 1991,(2): 315 -326. 被引量:1
  • 4DORIGO M, MANIEZZO V, COLORNI A. The ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B,1996,26(1): 29 -41. 被引量:1
  • 5DORIGO M, DI CARO G, GAMBARDELLA L M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999,5(2) :137 - 172. 被引量:1
  • 6NAVARRO VARELA G, SINCLAIR M C. Ant cdony optimization for virtual wave length path routing and wavelength allocation[ A]. In Proceedings of the 1999 Congress on Evolutionarg Computation[C]. Piscataway, N J: IEEE Press,1999.1 809 - 1816. 被引量:1
  • 7DORIGO M, GAMBARDELLA L M. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computations,1997,1(1): 53 -66. 被引量:1
  • 8PARK J.Pipe-routing algorithm development for a ship engine room design[D].Washington,D.C.,USA:University of Washington,2002. 被引量:1
  • 9KITAMURA Y,TANAKA T,KISHINO F,et al.3-D path planning in a dynamic environment using an Octree and an artificial potential field[C]//Proceedings of IROS95II.Los Alamitos,Cal.,USA:IEEE Computer Society,1995:2474-2482. 被引量:1
  • 10LOZANO-PEXEZ T.Spatial planning:a configuration space approach[J].IEEE Transactions on Computers,1983,32(2):108-119. 被引量:1

共引文献51

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部