摘要
为研究地热影响下橡胶-尾砂充填体的破坏特性、能量演化过程和微观形貌,制作橡胶-尾砂充填体试块,分别开展30,100,200,300℃条件下橡胶-尾砂充填体的单轴压缩试验和扫描电镜(SEM)试验,采用Weibull统计分布理论,建立不同温度热处理后橡胶-尾砂充填体的分段损伤本构模型。结果表明:加热温度升高加速了橡胶表面水化产物的破坏,试块加热后的质量损失增加,造成橡胶-尾砂充填体延性减小,弹性模量降低;峰值应力随温度升高呈先增加后减小的趋势。试块加载过程中,总能量以弹性能为主,耗散能为辅,随轴向应力增加,弹性能占比迅速减小;推导出不同温度热处理后橡胶-尾砂充填体试块的分段能量耗散本构模型,其与试验曲线吻合度较高。研究结果可为解决应用充填采矿法的废旧橡胶对采场环境的适应性问题提供参考。
To study the failure characteristics,energy evolution and micromorphology of rubber-filling body,rubbertailings backfill test blocks were fabricated,and uniaxial compression test and scanning electron microscope test were carried out under 30,100,200 and 300℃respectively.Using Weibull statistical distribution theory,the piecewise damage constitutive model of rubber-backfill after heat treatment of different temperatures was established.The results showed that the increase of heating temperature accelerated the destruction of hydration products on rubber surface,increased the mass loss of test block after heating,and led to the decrease of ductility and elastic modulus of rubber-filling body.The peak stress increased first and then decreased with the increase of temperature.In the loading process of the test block,the total energy was mainly elastic energy,and the dissipated energy was secondary.With the increase of axial stress,the proportion of elastic energy decreased rapidly.The piecewise energy dissipation constitutive model of rubber-backfill test block after heat treatment at different temperatures was derived,which was in a good agreement with the test curve.The results provided a reference for solving the problem of adaptability of waste rubber to stope environment.
作者
张竞
李骏
ZHANG Jing;LI Jun(School of Applied Science and Engineering,Fuzhou Institute of Technology,Fuzhou 350506,China)
出处
《采矿与岩层控制工程学报》
北大核心
2023年第4期84-93,共10页
Journal of Mining and Strata Control Engineering
基金
福建省中青年教师教育科研资助项目(科技类)(JAT210598)
福州理工学院校级科研基金资助项目(FTKY21064)。
关键词
橡胶-尾砂充填体
热处理
本构模型
扫描电镜(SEM)
单轴压缩试验
rubber-tailings backfill
heat treatment
constitutive model
scanning electron microscope(SEM)
uniaxial compression test