摘要
为探究不同数据同化算法在时空尺度上监测土壤含盐量的可行性,以内蒙古河套灌区沙壕渠灌域为研究区域,采用高分一号卫星遥感图像作为数据源,通过EnKF算法和PF算法的同化观测算子和模型算子得到时空范围中的土壤含盐量变化情况。其中观测算子分为两步,首先通过PLS-VIP准则来筛选光谱指数作为自变量,再使用ELM模型建立基于不同时间不同深度的遥感监测土壤含盐量模型;模型算子为基于Hydrus-1D模型的数学模拟监测土壤含盐量模型。结果表明,基于ELM模型的土壤含盐量模型中,深度0~20 cm、20~40 cm和40~60 cm的平均IOA均在0.74以上,平均ME在0.14%以下,表明反演模型具有良好的精度;基于Hydrus-1D的数学模拟监测土壤含盐量模型中,3个深度平均IOA在0.79~0.89之间,平均ME在0.128%~0.137%之间,能够较好地反映土壤盐分在时间序列中的运移情况;EnKF算法3个深度IOA在0.820以上,ME在0.141%~0.157%之间,NMB在0.141~0.252之间,PF算法3个深度IOA在0.89以上,ME在0.090%~0.142%之间,NMB在0.075~0.097之间,精度优于EnKF算法,能够很好地反映土壤含盐量在时间和空间上的分布情况。本文基于EnKF和PF算法进行Hydrus-1D模型和ELM模型的同化方案研究,提高了土壤含盐量的监测精度,可为后续在长时间大范围的时空尺度上监测土壤含盐量提供依据,也可为精准农业防治土壤盐渍化的研究提供参考。
In order to explore the feasibility of different data assimilation algorithms in monitoring soil salinity on the spatio⁃temporal scale,the Shahaoqu Canal Irrigation Area in Hetao Irrigation District of Inner Mongolia was taken as the research area,and the Gaofen 1 satellite remote sensing image was used as the data source.The assimilation observation operator and model operator of EnKF algorithm and PF algorithm were used to obtain the changes of soil salinity in the spatio⁃temporal range.The observation operator was divided into two steps,firstly,the PLS VIP criterion was used to filter the spectral index as the independent variable,and then the ELM model was used to establish the remote sensing monitoring soil salinity model based on different depths at different times;the model operator was a mathematical simulation monitoring soil salinity model based on the Hydrus 1D model.The results showed that in the ELM⁃based soil salinity model,the average IOA at the depths of 0~20 cm,20~40 cm and 40~60 cm were above 0.74,and the average ME was below 0.14%,indicating that the inversion model had good accuracy;in the Hydrus 1D⁃based mathematical simulation monitoring soil salinity model,the average IOA at the three depths was between 0.79 and 0.89 and the average ME was between 0.128%and 0.137%,which could better reflect the transport of soil salts in the time series;the EnKF algorithm had IOA above 0.820 for three depths,ME between 0.141%and 0.157%and NMB between 0.141 and 0.252,and the PF algorithm had IOA above 0.89 for three depths and ME ranged from 0.090%to 0.142%and NMB ranged from 0.075 to 0.097,with better accuracy than the EnKF algorithm,which can well reflect the distribution of soil salinity in time and space.The assimilation scheme of Hydrus 1D model and ELM model based on EnKF and PF algorithms improved the accuracy of monitoring soil salinity,which can provide a basis for subsequent monitoring of soil salinity on a long time and large spatial and temporal scale,and can also provide a reference for
作者
张智韬
陈策
贾江栋
殷皓原
姚一飞
黄小鱼
ZHANG Zhitao;CHEN Ce;JIA Jiangdong;YIN Haoyuan;YAO Yifei;HUANG Xiaoyu(College of Water Resources and Architectural Engineering,Northwest A&F University,Yangling,Shaanxi 712100,China;Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas,Ministry of Education,Northwest A&F University,Yangling,Shaanxi 712100,China)
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第6期361-372,共12页
Transactions of the Chinese Society for Agricultural Machinery
基金
国家重点研发计划项目(2017YFC0403302)
国家自然科学基金项目(51979232、51979234)。