期刊文献+

基于遥感多参数和门控循环单元网络的冬小麦单产估测 被引量:6

Yield Estimation of Winter Wheat Based on Multiple Remotely Sensed Parameters and Gated Recurrent Unit Neural Network
下载PDF
导出
摘要 为进一步准确、实时监测冬小麦长势并估测其产量,以陕西省关中平原为研究区域,选取冬小麦旬或生育时期尺度的条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)作为遥感特征参数,分别构建不同时间尺度的单参数、双参数和多参数的门控循环单元(GRU)神经网络模型,并模拟得到冬小麦长势综合监测指数I,结果表明,旬尺度的模型精度总体高于生育时期尺度的模型精度。基于5折交叉验证法进一步验证旬尺度多参数GRU模型的鲁棒性,并构建I与统计单产之间的线性回归模型以估测冬小麦单产,结果显示,冬小麦估测单产与统计单产的决定系数(R^(2))为0.62,均方根误差(RMSE)为509.08 kg/hm^(2),平均相对误差(MRE)为9.01%,相关性达到极显著水平(P<0.01),表明旬尺度的多参数估产模型能够较准确地估测关中平原冬小麦产量,且产量分布呈现西高东低的空间特性和整体保持稳定且平稳增长的年际变化特征。此外,基于GRU模型捕获冬小麦生长的累积效应,分析在连续旬中逐步输入参数对产量估测的影响,结果显示,模型具有识别冬小麦关键生长阶段的能力,3月下旬至4月下旬是冬小麦生长的关键时期。 In order to further accurately and real-time monitor the growth of winter wheat and estimate its yield,taking Guanzhong Plain in Shaanxi Province as study area,and vegetation temperature condition index(VTCI),leaf area index(LAI),fraction of photosynthetically active radiation(FPAR)at the ten-day or growth stage scales were selected as remotely sensed characteristic parameters.The GRU model was constructed based on different input parameters and time scales to obtain the growth comprehensive monitoring index I of winter wheat.The results showed that the accuracy of the models at the ten-day scale were generally higher than those of the growth stage scales.Based on the five-fold cross-validation method,the robustness of the multi-parameter GRU model on the ten-day scale was further verified,and the winter wheat yield was estimated based on the linear regression model between the growth comprehensive monitoring index I and the official yield records.The results showed that the R^(2)between the estimated and official yield records of winter wheat was 0.62,the RMSE was 509.08 kg/hm^(2),the mean relative error(MRE)was 9.01%,and the correlation reached the extremely significant level(P<0.01),indicating that the multi-parameter yield estimation model at the ten-day scale can accurately estimate the yield of winter wheat in the Guanzhong Plain.The distribution of yield presented the spatial characteristics of high yield in the west and low yield in the east,and the inter-annual change characteristics of overall stability and steady growth.In addition,based on the GRU model,the cumulative effect of winter wheat growth was captured,and the influence of inputting parameters step by step in consecutive ten days on yield estimation was analyzed.The results showed that the model had the ability to identify the key growth stages of winter wheat,and late March to late April was the critical period for the growth of winter wheat.
作者 王鹏新 王婕 田惠仁 张树誉 刘峻明 李红梅 WANG Pengxin;WANG Jie;TIAN Huiren;ZHANG Shuyu;LIU Junming;LI Hongmei(College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China;Shaanxi Provincial Meteorological Bureau,Xi’an 710014,China;College of Land Science and Technology,China Agricultural University,Beijing 100193,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2022年第9期207-216,共10页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金项目(42171332、41871336)
关键词 冬小麦 长势监测 估产 遥感多参数 时间尺度 门控循环单元 winter wheat growth monitoring yield estimation remote sensing multi-parameters time scale gated recurrent unit
  • 相关文献

参考文献17

二级参考文献275

共引文献976

同被引文献72

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部