摘要
针对现有遥感估产方法未对通道间依赖关系建模和无法整合影像外其他特征的问题,以宁夏枸杞估产为例,提出了一种基于CNN-S-GPR的高光谱影像年际作物估产模型。首先,运用直方图降维、归一化、时间序列融合和维度转换4种特征工程方法构建枸杞估产数据集,实现多波段、多时相影像融合;然后,采用卷积神经网络自动提取数据集特征,简化特征提取操作;接着,融合通道注意力机制,以表征不同通道间的重要程度;最后,引入高斯过程回归,整合影像特征及空间位置特征,进一步提高估产准确性。实验结果表明,与其他估产模型相比,该模型平均相对误差和均方根误差下降了0.44~0.95个百分点和52.48~82.65 t,且决定系数达到0.91。结合宁夏16个县的枸杞年际产量实现了复杂拟合,对全区农业规划布局及可持续发展具有参考价值。
Aiming at the problems of the existing remote sensing yield estimation methods that do not model the dependence between channels and ignore integrating other features outside the image,an interannual crop yield estimation method based on CNN-S-GPR was proposed for hyperspectral images,taking Ningxia wolfberry yield as an example.Firstly,histogram statistics,histogram normalization and time series fusion were used to construct the data set,which realized the fusion of multi-band and multi-temporal images.Secondly,using convolutional neural networks to extract features from the data set;and then the channel attention mechanism was used to characterize the importance of different channels.Finally,Gaussian process regression(GPR)was introduced to explicitly integrate image features and spatial location features further improved the accuracy of production estimation.The test results showed that compared with that of other yield estimation models,MRE and RMSE of this model were decreased from 0.44 percentage points to 0.95 percentage points and from 52.48 t to 82.65 t,respectively,and the coefficient of determination reached 0.91.It realized the complex fitting of the output of wolfberry in 16 counties of Ningxia during the year,which was of great significance to the agricultural planning layout,policy adjustment and sustainable development.
作者
刘立波
王涛
张鹏
LIU Libo;WANG Tao;ZHANG Peng(School of Information Engineering,Ningxia University,Yinchuan 750021,China)
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2022年第8期250-257,共8页
Transactions of the Chinese Society for Agricultural Machinery
基金
宁夏重点研发计划项目(2020BFG02013)
关键词
枸杞
估产
高光谱影像
卷积神经网络
通道注意力机制
高斯过程回归
wolfberry
yield estimation
hyperspectral image
convolutional neural networks
channel attention mechanism
Gaussian process regression