期刊文献+

污泥热干化含水率实时监测的HBA-SVM回归模型研究 被引量:1

Study on HBA-SVM regression model for heat drying sludge moisture content real-time monitoring
下载PDF
导出
摘要 利用网格划分法和黑盒法采集分析污泥含水率的实时监测数据,探讨热干化系统湿热空气的性质和计算方法,研究回风口排湿速率和干化时间与污泥含水率的关系。在污泥干化领域尝试引入最新蜜獾算法(HBA),优化支持向量机(SVM),构建HBA-SVM回归模型,并与粒子群算法(PSO)和遗传算法(GA)优化的SVM回归模型进行对比分析。结果表明:回风口排湿速率和污泥含水率随干化时间增加呈非线性降低,排湿量下降的变化速率略高于含水率。HBA-SVM的决定系数(R^(2))是0.9965,均方根误差(RMSE)是0.9792,离散度更低,精确度更高;将模型移植到嵌入式系统,经现场试验验证,综合预测精度可达90%以上,是实际污泥含水率监测的一种有效方法。 Gridding method and black box method were used to acquire and analyze real-time monitoring of moisture content in heat-drying sludge.The properties and calculation methods of hot and humid air in heat-drying system were discussed to study the relationship of moisture discharge rate,drying time and sludge moisture content in the return air inlet.The latest honey badger algorithm(HBA)was tried and introduced to optimize the support vector machine(SVM).HBA-SVM regression model was established,and then compared with the regression model of SVM optimized by particle swarm optimization(PSO)and genetic algorithm(GA).Results showed that the return air inlet moisture discharge rate and sludge moisture content were non-linearly reduced with drying time,and the reduction rate of moisture discharge was slightly higher than that of moisture content.The coefficient of determination(R^(2))and root mean square error(RMSE)of HBA-SVM were 0.9965 and 0.9792,respectively,and lower dispersion and higher accuracy were achieved.By transplanting the model into the embedded system and verified by site testing,the comprehensive prediction accuracy reached more than 90%.It is concluded that the low dispersion of the prediction value and high prediction accuracy are obtained by applying the HBA-SVM regression model,which is an effective method that can be used to monitor the actual sludge moisture content.
作者 朱建伟 盛强 刘威 饶宾期 ZHU Jianwei;SHENG Qiang;LIU Wei;RAO Binqi(Intelligent Manufacturing and Elivator College,Huzhou Vocational&Technical College,Huzhou 313000,China;Key Laboratory of Robot System Integration and Intelligent Equipment of Huzhou City(Intelligent Manufacturing and Elivator College,Huzhou Vocational&Technical College),Huzhou 313000,China;New Energy Engineering and Automobile College,Huzhou Vocational&Technical College,Huzhou 313000,China;College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《能源环境保护》 2023年第4期149-156,共8页 Energy Environmental Protection
基金 国家自然科学基金(51878635) 浙江省高层次人才特殊支持计划(2021RS2056) 浙江省属高校基本科研业务费专项资金(2020YW02) 湖州市公益性技术应用研究(重点)项目(2018GZ26) 浙江省高校国内访问学者“教师专业发展项目”(FX2022115)。
关键词 污泥 热干化 含水率 蜜獾算法 回归模型 Sludge Heat drying Moisture content Honey badger algorithm Regression model
  • 相关文献

参考文献10

二级参考文献40

共引文献23

同被引文献5

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部