期刊文献+

基于专利知识流网络和图表示学习的技术机会链路预测研究 被引量:1

Research on Technology Opportunity Link Prediction Based on Patent Knowledge Flow Network and Graph Representation Learning
原文传递
导出
摘要 [目的/意义]准确地对技术机会进行预测,能够帮助组织评估和发现具有前景的技术机会,支撑和优化技术研发战略决策与布局,从而提升组织在技术创新领域的竞争优势。[方法/过程]提出一种基于VGAE框架的ss-VGAE技术预测方法。首先,运用生长曲线划分和确定目标领域的生命周期,运用能够兼顾主副IPC的方法在各阶段建立专利知识流网络,并分别提取网络中各个节点的语义特征和结构特征;其次,使用变分图自编码器(VGAE)学习节点的向量表示;最后,利用重构出的邻接矩阵进行技术机会链路预测。[结果/结论]使用石墨烯专利数据对本文方法的有效性进行验证,结果显示基于ss-VGAE的技术机会链路预测模型取得的AUC、AP均优于其他模型,并在当前石墨烯知识流网络上的技术机会进行预测,验证该模型能够有效地挖掘潜在的技术机会,支撑技术研发战略决策和组织技术竞争力的提升。 [Purpose/significance]Accurately predicting technological opportunities can help organizations assess and discover promising technological opportunities,support and optimize strategic decision-making and layout of technological R&D,and thus enhancing the organization’s competitive advantage in the field of technological innovation.[Method/process]The ss-VGAE technology prediction method based on the VGAE framework is proposed in this paper.First,we leverage the growth curve to divide and determine the life cycle of field development,and then use the method that can take into account the primary and secondary IPC to establish a patent knowledge flow network at each stage,with semantic features and structural features extracted for each node of the patent knowledge flow networks.Then,the variational graph autoencoder(VGAE)is used to learn the representation of every node.Finally,the reconstructed adjacency matrix is used to predict the technical opportunity.[Result/conclusion]Graphene patent dataset is used to verify the effectiveness of the method in this paper.The results show that the AUC and AP obtained by the link prediction model based on ss-VGAE are better than other models,and it is more effective than other models on the current graphene knowledge flow network.The prediction of technological opportunities shows that our model can effectively tap potential technological opportunities,support strategic decision-making in technological research and development,meanwhile improve organizational technological competitiveness.
作者 李慧 庞经纬 孟玮 Li Hui
出处 《情报理论与实践》 CSSCI 北大核心 2023年第7期107-114,149,共9页 Information Studies:Theory & Application
基金 中央高校基本科研业务费专项资金项目“面向学科领域的知识图谱构建与演化分析系统的设计与实现”(项目编号:QTZX22081) 陕西省自然科学基础研究计划资助项目“融合多源异构数据的新兴技术发展潜力研究”(项目编号:2023-JC-YB-625)的成果。
关键词 专利网络 技术机会预测 国际专利分类号 链路预测 变分图自编码 patent network technology opportunity forecast IPC link prediction VGAE
  • 相关文献

参考文献5

二级参考文献73

  • 1胡健,印玺.基于专利引用的技术流矩阵的分析——对石油天然气产业技术溢出效应的测度[J].科学学研究,2010,28(12):1843-1848. 被引量:15
  • 2汤文仙.技术融合的理论内涵研究[J].科学管理研究,2006,24(4):31-34. 被引量:35
  • 3巴顿.知识与创新[M].孟庆国,侯世昌,译.北京:新华出版社,2000:23. 被引量:4
  • 4Zhuge E. A knowledge flow model for peer- to- peer team knowledge sharing and management [ J ]. Expert Systems with Applications, 2002, 23 (1): 23-30. 被引量:1
  • 5Krugmn p. Increasing returns and economic geography [ J]. Journal of Political Economy, 1991, 99: 484-499. 被引量:1
  • 6Jaffe AB, Trajtengerg M, Henderson R. Geographic localization of knowledge spillovers as evidenced by patent citations [ J]. Quarterly Journal of Economics, 1993, 108 (3): 577-598. 被引量:1
  • 7Koo J. Aggl~nerafien and spillovers in a sinaultaneous framework [R]. Annals of Regional Science, 2005, 39:35-47. 被引量:1
  • 8Kaiser U. Measuring knowledge spillovers in manufacturing and ser- vicing: an empirical assessment of alternative approaches [ J ]. Re- search Policy, 2002, 31:125 - 144. 被引量:1
  • 9Nelson A J. Measuring knowledge spillovers: what patterns, licenses and publications reveal about innovation diffusion [ J ]. Research Poli- cy, 2009, 38 (6): 994-1005. 被引量:1
  • 10Duguet E, Macgarvie M, How well do patent citations measure flows of technologies? Evidence from French innovative surveys [ J ]. Eco- nomies of Innovation and New technology, 2005, 14 (5) : 375 - 393. 被引量:1

共引文献63

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部