摘要
将金属有机骨架材料和水的混合物作为工作介质置于密闭容器中,形成基于金属有机骨架材料的分子弹簧隔振器;当隔振器受到外部载荷时,水分子在外压作用下侵入和逸出金属有机骨架材料的疏水微孔,实现能量的储存与释放。通过微观力学平衡和宏观体积变化关系模拟了水分子大量侵入金属有机骨架材料微孔的过程,推导隔振器在受力过程的力位移关系,采用准静态试验验证推导的力学模型,经仿真和试验分析隔振器性能的影响因素。结果表明,理论与试验结果一致性较好,基于金属有机骨架材料的分子弹簧隔振器表现出高-低-高的分段刚度特性,金属有机骨架材料的最小接触角、最大孔径、钴配比和孔容积等参数均会对隔振器的阶段Ⅱ产生影响,调整这些参数可灵活调节隔振器的性能。
Here,mixture of metal-organic skeleton material and water was placed in a closed container as working medium to form a molecular spring vibration isolator based on metal organic skeleton material.When the vibration isolator was subjected to external load,water molecules could invade and escape from hydrophobic micropores of metal-organic skeleton material under action of external pressure to realize storage and release of energy.The process of water molecules invading micropores of metal-organic skeleton material was simulated by using the relation between microscopic mechanical balance and macroscopic volume change.The force-displacement relation of the vibration isolator in force-exerting process was derived.The derived mechanical model was verified by adopting quasi-static tests,and factors affecting performance of the vibration isolator were analyzed through simulation and tests.The results showed that the theoretical results and testones are in better agreement;molecular spring vibration isolator based on metalorganic skeleton material reveals a high-low-high segmented stiffness properties;minimum contact angle,maximum aperture,cobalt ratio and pore volume,etc.parameters of metalorganic skeleton material can affect stage II of vibration isolator,adjusting these parameters can flexibly adjust performance of vibration isolator.
作者
金阳
陈卫东
陈前
滕汉东
JIN Yang;CHEN Weidong;CHEN Qian;TENG Handong(State Key Lab of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2023年第13期208-213,277,共7页
Journal of Vibration and Shock
基金
国家自然科学基金(11272145,11472127)。
关键词
金属有机骨架材料
分子弹簧
分段刚度
隔振
metalorganic skeleton material
molecular spring
segmental stiffness
vibration isolation