期刊文献+

人机交互下智能仓储物流拣选操作者脑力疲劳 被引量:1

Mental Fatigue of Intelligent Warehouse Logistics Picking Operators in Human-computer Interaction
下载PDF
导出
摘要 为了保证智能仓储系统订单拣选效率及仓储的高效运行,减少人机交互下操作者的体力疲劳诱发的脑力疲劳,需要对操作者的脑力疲劳变化规律和变化特征进行研究。通过21名男性参与者被要求完成三个不同体力疲劳下的订单拣选任务,并在任务期间收集他们的主观问卷和脑电信号进行研究。结果表明高体力疲劳能显著加速脑力疲劳的诱发,额区和枕区α、β节律和β/θ和(α+β)/θ等参数可以作为典型的表征脑力疲劳的参数。同时基于自回归模型和支持向量机的机器学习分类方法可以快速地对脑力疲劳进行评价,该方法具有运算速度快和准确率的特征。研究结果可为人-机交互下智能仓储物流拣选操作现场的全面性、差异化疲劳管理措施的制定提供依据。 In order to ensure the order picking efficiency and the efficient operation of warehousing,and to reduce the mental fatigue caused by physical fatigue under human-computer interaction,the changing rules and characteristics of mental fatigue of operators were studied.Twenty-one male participants were required to complete three order selection tasks with different levels of physical fatigue,and their subjective questionnaires and electroencephalogram(EEG)signals were collected during the task.The results show that high physical fatigue can significantly accelerate the induction of mental fatigue,in which theα,βrhythm andβ/θ,(α+β)/θof frontal and occipital regions can be used as typical parameters to characterize degree of mental fatigue.Meanwhile,the machine learning classification method based on autoregressive model and support vector machine can quickly evaluate mental fatigue.This method owns fast computation speed and accuracy.The results of this study can provide a basis for the formulation of comprehensive and differential fatigue management measures for intelligent warehousing logistics picking operation under human-computer interaction.
作者 邵舒羽 吴锦涛 张朋 张立伟 SHAO Shu-yu;WU Jin-tao;ZHANG Peng;ZHANG Li-wei(School of Logistics,Beijing Wuzi University,Beijing 101149,China;School of Biological Science and Medical Engineering,Beihang University,Beijing 100083,China;Beijing Mechanical Equipment Research Institute,Beijing 100854,China;State Key Laboratory of Brain and Cognitive Science,Institute of Psychology,Chinese Academy of Sciences,Beijing 100101,China)
出处 《科学技术与工程》 北大核心 2023年第19期8279-8287,共9页 Science Technology and Engineering
基金 北京市教育委员会科学研究计划(KM202210037001)。
关键词 智能仓储 物流拣选 脑力疲劳 脑电信号 机器学习 intelligent storage logistics picking mental fatigue electroencephalogram(EEG) machine learning
  • 相关文献

参考文献9

二级参考文献82

共引文献124

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部