期刊文献+

基于标记增强的离散跨模态哈希方法 被引量:4

Label Enhancement Based Discrete Cross-modal Hashing Method
下载PDF
导出
摘要 跨模态哈希通过将不同模态的数据映射为同一空间中更紧凑的哈希码,可以大大提升跨模态检索的效率.然而现有跨模态哈希方法通常使用二元相似性矩阵,不能准确描述样本间的语义相似关系,并且存在平方复杂度问题.为了更好地挖掘数据间的语义相似关系,提出了一个基于标记增强的离散跨模态哈希方法.首先借助迁移学习的先验知识生成样本的标记分布,然后通过标记分布构建描述度更强的语义相似性矩阵,再通过一个高效的离散优化算法生成哈希码,避免了量化误差问题.最后,在两个基准数据集上的实验结果验证了所提方法在跨模态检索任务上的有效性. Cross-modal hashing can greatly improve the efficiency of cross-modal retrieval by mapping data of different modalities into more compact hash codes.Nevertheless,existing cross-modal hashing methods usually use a binary similarity matrix,which cannot accurately describe the semantic similarity relationships between samples and suffer from the squared complexity problem.In order to better mine the semantic similarity relationships of data,this study presents a label enhancement based discrete cross-modal hashing method(LEDCH).It first leverages the prior knowledge of transfer learning to generate the label distribution of samples,then constructs a stronger similarity matrix through the label distribution,and generates the hash codes by an efficient discrete optimization algorithm with a small quantization error.Finally,experimental results on two benchmark datasets validate the effectiveness of the proposed method on cross-modal retrieval tasks.
作者 王永欣 田洁茹 陈振铎 罗昕 许信顺 WANG Yong-Xin;TIAN Jie-Ru;CHEN Zhen-Duo;LUO Xin;XU Xin-Shun(School of Computer Science and Technology,Shandong Jianzhu University,Jinan 250101,China;School of Software,Shandong University,Jinan 250101,China)
出处 《软件学报》 EI CSCD 北大核心 2023年第7期3438-3450,共13页 Journal of Software
基金 国家自然科学基金(62172256,61872428,61991411) 山东省重点研发计划(2019JZZY010127) 山东省自然科学基金(ZR2019ZD06,ZR2020QF036)。
关键词 跨模态检索 哈希 标记增强 迁移学习 离散优化 cross-modal retrieval hashing label enhancement transfer learning discrete optimization
  • 相关文献

参考文献6

二级参考文献39

  • 1王凤国,冯象初,张小波.平稳小波变换在仿射不变性目标识别中的应用[J].计算机工程与应用,2007,43(21):239-241. 被引量:5
  • 2http://venturebeat.com/2008/07/25/google-finds-that-the-web-has-over-1-trillion-unique-urls. 被引量:1
  • 3/http://www.kullin.net/2010/09/flickr-5-billion-photos/. 被引量:1
  • 4Arya S, Mount DM. Approximate nearest neighbor queries in fixed dimensions. In: Proc. of the 4th Annual ACM/SIGACT-SIAM Symp. on Discrete Algorithms. New York: ACM/SIAM, 1993. 271-280. 被引量:1
  • 5Gionis A,Indyk P, Motwani R. Similarity search in high dimensions via hashing, In: Proc. of the 25th Int'l Conf. on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1999.518-529. 被引量:1
  • 6Weiss Y, Torralba A, Fergus R. Spectral hashing. In: Proc. of the 22th Annual Conf. on Neural Information Processing System, New York: Curran Associates Inc., 2008. 1753-1760. 被引量:1
  • 7Torralba A, Fergus R, Freeman WT. 80 million tiny images: A large dataset for non-parametric object and scene recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008,30(11):1958-1970. [doi: 10,1109/TPAMI,2008.128]. 被引量:1
  • 8Torralba A, Fergus R, Weiss Y. Small codes and large databases for recognition, In: Proc, of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Washington: IEEE Computer Society, 2008. 1-8. [doi: 10,1109/CVPR.2008.4587633]. 被引量:1
  • 9Kulis B, Jain P, Grauman K. Fast similarity search for learned metric. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(12):2143-2157. [doi: 10.1109/TPAMI.2009,151]. 被引量:1
  • 10Xu H, Wang JD, Li Z, Zeng G, Li SP, Yu NH, Complementary hashing for approximate nearest neighbor search. In: Proc. of the IEEE Int'l Conf. on Computer Vision, New York: IEEE, 2011. 1631-1638. [doi: 10.1109/ICCV.2011.6126424]. 被引量:1

共引文献26

同被引文献23

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部