期刊文献+

基于自适应粒子群优化算法的无线传感器网络覆盖控制 被引量:4

Coverage control of wireless sensor networks by using adaptive particle swarm optimization algorithm
下载PDF
导出
摘要 为了解决无线传感器网络覆盖率控制收敛性较差、自适应能力不强的问题,提出了WSN网络覆盖问题假设,并根据网络有效覆盖率及任务节点数量,构建WSN网络覆盖控制问题模型.以粒子群算法为基础,采用自适应粒子群优化算法获取最佳覆盖区域,在惯性权重系数中加入演变因子和聚合因子,改善粒子群算法的适应性,通过增加碰撞回弹策略,优化粒子群的多元性,实现WSN网络覆盖的最优控制.结果表明,所提方法自适应能力强,具有较高的覆盖率,可降低控制网络节点移动产生的耗能. In order to solve the problem that the convergence of wireless sensor network coverage control is poorer and the adaptive ability is not strong,WSN network coverage question assumptions were proposed.According to the effective network coverage and the task node quantity,a WSN network coverage control model was built.In terms of particle swarm optimization(PSO)algorithm,an adaptive particle swarm optimization algorithm was proposed to obtain the best coverage,and the evolution and aggregation factors were added to the inertia weight coefficient for the improvement of PSO adaptability.Through the strategy of increasing collision rebound,the diversity of PSO was optimized,and the optimal coverage control of WSN network was realized.The results show that the as-proposed method has strong adaptive ability and good convergence of coverage control,and can reduce the energy consumption generated by the control of network node movement.
作者 聂文梅 宋晓霞 NIE Wen-mei;SONG Xiao-xia(School of Computer and Network Engineering,Shanxi Datong University,Datong 037009,China)
出处 《沈阳工业大学学报》 CAS 北大核心 2023年第4期459-464,共6页 Journal of Shenyang University of Technology
基金 山西省自然科学基金面上项目(201901D111311) 山西大同市重点研发项目(2020023) 山西大同大学校级项目(2019k5).
关键词 无线传感器网络 粒子群算法 演变因子 聚合因子 感知半径 惯性权重系数 wireless sensor network particle swarm optimization algorithm evolution factor aggregation factor perceived radius inertia weight coefficient
  • 相关文献

参考文献16

二级参考文献116

  • 1侯惠峰,刘湘雯,于宏毅,胡捍英.一种基于地理位置信息的无线传感器网最小能耗路由算法[J].电子与信息学报,2007,29(1):177-181. 被引量:16
  • 2Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless Sensor Networks : A Survey [ J ]. C ompututer Network, 2002,38 (4) : 393- 422. 被引量:1
  • 3Cardei M, Wu J. Energy-Efficient Coverage Problems in Wireless Ad-boc Sensor Networks [ J ]. Computer Communications, 2006, 29(4) :413-420. 被引量:1
  • 4Zorbas D, Glynos D, Kotzanikolaou P, et al. Solving Coverage Prob- lems in Wireless Sensor Networks Using Cover Sets [ J ]. Ad Hoc Networks,2010,8(4) :400-415. 被引量:1
  • 5Chaudhry S B, Hung V C, Guha R K, et al. Pareto-Based Evolu- tionary Computational Approach for Wireless Sensor Placement [J ]. Engineering Applications of Artificial Intelligence, 2011, 24( 3 ) :409-425. 被引量:1
  • 6Sengupta S, Das S, Nasir M, etal. An Evolutionary Muhiobjective Sleep-Scheduling Scheme for Differentiated Coverage in Wireless Sensor Networks [ J ]. Systems, Man, and Cybernetics, Part C : Ap- plications and Reviews, IEEE Transactions on, 2012, 42 (6) :1093-1102. 被引量:1
  • 7Fonoage M,Cardei M,Ambrose A. A QoS Based Routing Protocol for Wireless Sensor Networks [ C ]//Performance Computing and Communications Conference ( IPCCC ), 2010 IEEE 29th Interna- tional. IEEE, 2010 : 122-129. 被引量:1
  • 8Heinzehnan W R, Chandrakasan A, Balakrishnan H. Energy-Effi- cient Communication Protocol for Wireless Microsensor Networks [ C]//System Sciences, Proceedings of the 33rd Annual Hawaii International Conference on.IEEE, 2000,2 : 10-17. 被引量:1
  • 9Deng J. Multi-hop/Direct Forwarding (MDF)for Static Wireless Sensor Networks [ J ]. ACM Trans Sens Netw, 2009,5 (4) : 1- 25. 被引量:1
  • 10Jin W, Jinsung C, Sungyoung L, et al. Hop-Based Energy Aware Routing Algorithm for Wireless Sensor Networks[ J]. IEICE Trans- actions on Communications, 2010,93 (2) : 305- 316. 被引量:1

共引文献199

同被引文献27

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部