期刊文献+

一种基于机器学习和葵花8号数据的PM_(2.5)浓度监测方法 被引量:2

A Method for PM_(2.5)Concentration Monitoring Based on Machine Learning and Himawari-8 Satellite Data
下载PDF
导出
摘要 基于卫星遥感数据和气象数据构建模型是实现PM_(2.5)浓度监测的重要方法。利用2017-2020年河南区域的葵花8号AOD相关产品、地面气象观测数据及PM_(2.5)浓度逐时地面观测数据,建立样本数据库,探究了PM_(2.5)浓度与遥感反演参数、气象因子的相关关系,提出一种基于空间距离的机器学习方法,构建了卫星遥感与气象数据相结合的PM_(2.5)监测模型,并利用PM_(2.5)观测数据对模型进行散点拟合和空间分布的验证。结果表明:PM_(2.5)浓度与能见度(V)、气温(T)、气溶胶光学厚度(AOD)有极为显著的相关关系;从PM_(2.5)浓度反演值与观测值的散点回归分析来看,PM_(2.5)浓度反演值与观测值相关系数R^(2)=0.73;从PM_(2.5)浓度反演值与观测值的空间分布图来看,PM_(2.5)浓度反演值实现了空间格点的小时监测,弥补了非晴空及夜间监测数据的缺失,在空间分布上与观测值一致,具有很高的精确性和可靠性。基于空间距离的机器学习方法构建PM_(2.5)浓度监测模型能很好地应用于PM_(2.5)浓度监测,为PM_(2.5)浓度监测提供了新的思路和方法。 Modeling based on satellite remote sensing data and meteorological data is an important method for PM_(2.5) concentration monitoring.Based on the AOD related products of Himawari-8,meteorological observation data,hourly observation data of PM_(2.5) concentration in Henan from 2017 to 2020,we established a sample database in this research,explored the correlation between the PM_(2.5) concentration and the remote sensing retrieval parameters and meteorological factors,proposed a machine learning method based on spatial distance,constructed a PM_(2.5) monitoring model combining satellite remote sensing and meteorological data,and used PM_(2.5) observation data in verifying the scattered point fitting and spatial distribution of the model.The results show that PM_(2.5) has a very significant correlation with visibility(V),air temperature(T)and aerosol optical thickness(AOD).From the scatter regression analysis of the PM_(2.5) concentration retrieval and observation,the correlation between PM_(2.5) retrieval and observation is very good(R^(2)=0.73).From the spatial distributions of PM_(2.5) retrieval and observation,the retrieved PM_(2.5) has realized the hourly monitoring of spatial grid points,making up for the lack of non-clear sky and night monitoring data,which is consistent with the observed values in spatial distribution,so its accuracy and reliability are very high.Therefore,the PM_(2.5) monitoring model constructed by the machine learning method based on spatial distance could be well applied to PM_(2.5) monitoring,which is a new idea and method for PM_(2.5) monitoring.
作者 叶昊天 邹春辉 田宏伟 Ye Haotian;Zou Chunhui;Tian Hongwei(CMA·Henan Key Laboratory of Agrometeorological Support and Applied Technique,Zhengzhou 450003,China;Henan Institute of Meteorological Sciences,Zhengzhou 450003,China;Anyang National Climate Observatory,Anyang 455000,China)
出处 《气象与环境科学》 2023年第3期89-97,共9页 Meteorological and Environmental Sciences
基金 国家自然科学基金项目(41805090) 中国气象局·河南省农业气象保障与应用技术重点开放实验室应用技术研究基金项目(KZ201911、KM202018) 安阳市国家气候观象台开放研究基金项目(AYNCOF2022313)。
关键词 PM_(2.5)浓度 空间距离 机器学习 葵花8号 PM_(2.5)concentration spatial distance machine learning Himawari-8
  • 相关文献

参考文献20

二级参考文献255

共引文献696

同被引文献29

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部