摘要
本研究对AZ31B镁合金进行超声表面滚压处理,获得在厚度方向具有细晶层的镁合金板并表征其截面的微观结构;通过纳米压痕实验获得了镁合金截面不同位置的力学性能。将ABAQUS有限元软件与Isight软件相结合,反演得出镁合金测量层简化J-C本构方程参数;对细晶层的力-位移曲线进行有限元计算,探讨了残余应力对镁合金力学性能的影响。结果表明:通过超声表面滚压处理后,试样截面方向形成厚度约为80.68μm的细晶层;截面方向上距镁合金表面越近,镁合金的弹性模量、硬度、残余压应力越大,滚压头的平均位移越小;有限元计算得出镁合金细晶层的残余应力对镁合金塑性性能的提高起到重要作用。通过分析超声表面滚压后AZ31B镁合金的力学性能,对其应用提供了一定的参考和依据。
The AZ31B magnesium alloy was processed by ultrasonic surface rolling,obtained the magnesium alloy plate with sub-grains layer in the thickness direction and characterized the microstructure.The mechanical properties of magnesium alloy were measured by nanoindentation tests at different distances from surface.Combined ABAQUS finite element software and Isight software,the load-displacement curves were inversed and the parameters of simplified J-C constitutive equation were obtained of AZ31B magnesium alloys in each layer.The effect of residual stress on the mechanical properties of magnesium alloy was studied by finite element calculation of the load-displacement curve of sub-grains layer.The results show that the thickness of the subgrains layer is about 80.68 μm in the sample surface layer through ultrasonic surface rolling.The elastic modulus,hardness value,residual compressive stress increase and the average displacement decreases with the decrease of the distance from surface of sub-grains layer.The finite element calculation shows that the residual stress of subgrains layer plays an important role in improving the plastic properties of magnesium alloy.By analyzing the mechanical properties of AZ31B magnesium alloy after ultrasonic surface rolling,it provides some reference and basis for its application.
作者
赵玉婷
周霞
ZHAO Yu-ting;ZHOU Xia(State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Faculty of Vehicle Engineering and Mechanics,Dalian University of Technology,Dalian 116024,China)
出处
《中国有色金属学报》
EI
CAS
CSCD
北大核心
2023年第5期1469-1479,共11页
The Chinese Journal of Nonferrous Metals
基金
国家自然科学基金资助项目(11672055)。
关键词
超声表面滚压
纳米压痕实验
有限元计算
反演参数
ultrasonic surface rolling
nano-indentation experiment
finite element calculation
inversion parameters