期刊文献+

基于颜色气味信息融合的苦杏仁走油程度判别分析与质量预测模型建立 被引量:2

Study on discriminative analysis and quality prediction models of Armeniacae Semen Amarum with rancidness degrees based on information fusion of color and odor
原文传递
导出
摘要 目的建立基于颜色气味数字化融合信息的苦杏仁Armeniacae Semen Amarum走油程度判别分析和内在质量预测模型。方法基于颜色气味数字化的融合信息,联合机器学习算法对其走油程度进行判别,对比其正判率,寻找识别效果最好的算法。利用SPSS分析平台,开展苦杏仁颜色气味融合信息数字化与内在化学成分的相关性分析,同时建立含量预测回归方程并且检验其拟合度。结果基于粉末颜色和气味融合信息的模型建立中,Logistic、IBK、K-Star、LMT和Random Forest算法正判率较高,可完成对不同走油程度苦杏仁的分类鉴别;基于剖面颜色和气味融合信息的模型建立中,Logistic算法和K-Star算法可完成走油程度的判定。基于粉末颜色及气味融合信息建立苦杏仁质量预测模型,预测方程:Y_(苦杏仁苷)=2.175-1.340 F_(1-2)+0.529 F_(1-1),R^(2)=0.732;Y_(酸值)=2.113+1.7249 F_(1-2)-0.667 F_(1-1),R^(2)=0.719;基于剖面颜色及气味融合信息建立苦杏仁质量预测模型,预测方程如下:Y_(苦杏仁苷)=2.153+1.242 F_(2-2)+0.5 F_(2-1)-0.689 F_(2-3),R^(2)=0.775,Y_(酸值)=2.226-1.946 F_(2-2)-0.785F_(2-1),R^(2)=0.738,拟合度结果优良。结论通过颜色气味数字化信息可快速推断苦杏仁化学成分的变化趋势,颜色气味融合信息测量可发展为苦杏仁质量评价的新方法。 Objective To establish discriminative analysis and quality prediction models of Kuxingren(Armeniacae Semen Amarum,ASA)with different rancidness degrees based on fusion information of color and odor digital values.Methods Firstly different models were established by various classifiers to discriminate different rancidness degrees of ASA samples with positive judgment rate as evaluation index.And then the optimal algorithm was screened out based on fusion information of color and odor digital values.Using SPSS analysis platform,the correlation analysis between the digitalized odor and color fusion information and the chemical composition of ASA samples was carried out.Afterwards the content prediction regression equation was established and its fit was checked.Results In the model building based on the fusion information of powder color and odor,four kinds of algorithms,namely Logistic,IBK,K-Star,LMT and Random Forest,possess higher positive judgment rate and could complete the classification and identification of ASA samples with different rancidness degrees;In the model building based on the fusion information of longitudinal section color and odor,Logistic algorithm and K-Star algorithm could complete the determination of rancidness degrees.The prediction models of ASA quality were established based on the fusion information of powder color and odor,and the prediction equations were as follows:Y_(amygdalin)=2.175-1.340 F_(1-2)+0.529 F_(1-1),R^(2)=0.732;Y_(acid value)=2.113+1.7249 F_(1-2)-0.667 F_(1-1),R^(2)=0.719;based on the fusion information of longitudinal section color and odor ASA quality prediction models were established with the following prediction equations:Y_(amygdalin)=2.153+1.242 F_(2-2)+0.5 F_(2-1)-0.689 F_(2-3),R^(2)=0.775,Y_(acid value)=2.226-1.946 F_(2-2)-0.785 F_(2-1),R^(2)=0.738,with excellent fit results.Conclusions The color-odor digital information was used to profile the trend of chemical composition of ASA samples,and the color-odor fusion information measurement could be used for the qu
作者 欧阳少琴 陈慧荣 拱健婷 王亚顺 崔阳 翟恩爱 梁敬妮 邹慧琴 闫永红 OUYANG Shao-qin;CHEN Hui-rong;GONG Jian-ting;WANG Ya-shun;CUI Yang;ZHAI En-ai;LIANGJing-ni;ZOU Hui-qin;YAN Yong-hong(School of Traditional Chinese Medicine,Beijing University of Traditional Chinese Medicine,Beijing 102488,China;Beijing Haikinger Pharmaceutical Technology Co.,Beijing 100053,China;Beijing Institute of Traditional Chinese Medicine,Beijing 100005,China)
出处 《中草药》 CAS CSCD 北大核心 2023年第12期3806-3814,共9页 Chinese Traditional and Herbal Drugs
基金 国家自然科学基金面上项目(81573542) 国家自然科学基金青年科学基金项目(81403054)。
关键词 苦杏仁 走油 气味数字化 颜色数字化 信息融合 质量评价 Armeniacae Semen Amarum rancidness odor digitization color digitization information fusion quality evaluation
  • 相关文献

参考文献15

二级参考文献206

共引文献129

同被引文献39

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部