摘要
为开发高效稳定的析氢电催化剂,采用恒电流电沉积法在镍网基底上制备自支撑的Ni-Sn-B析氢电极,通过扫描电镜、X射线衍射仪、透射电镜、X射线光电子能谱仪和电化学工作站等对电极的形貌结构、元素组成与电催化析氢性能进行表征和测试。结果表明,Ni-Sn-B电极表面由粗糙的胞状颗粒紧密堆积而成,具有非晶态特征结构。在碱性电解质中,Ni-Sn-B电极表现出优异的催化析氢活性和稳定性,在10 mA/cm2电流密度下过电位仅为63 mV,比Ni-Sn和Ni-B电极的过电位分别降低38.2%和59.1%。电极的电荷转移电阻为1.56Ω,经过5000次CV循环和72 h电解后,仍保持非常高的析氢活性。粗糙的表面形貌及非晶态结构使电极的电化学活性表面积和催化活性位点显著增加,同时B和Sn对Ni电子结构的调控,可有效降低电荷转移阻力,从而提升电极的电催化析氢性能。
To develop efficient and stable hydrogen evolution electrocatalysts,Ni-Sn-B hydrogen evolution electrode were prepared on Ni mesh substrate by galvanostatic electrodeposition method.The morphology,structure,elemental composition,and electrocatalytic hydrogen evolution properties of the electrode were characterized and tested by scanning electron microscopy,X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,and electrochemical workstation.The results show that the surface of Ni-Sn-B electrode is composed of rough cellular particles,which are closely packed and have amorphous characteristic structure.Ni-Sn-B electrode has excellent catalytic performance and stability for hydrogen evolution in alkaline solution.The overpotential is only 63 mV at current density of 10 mA/cm2,which is 38.2%and 59.1%lower than that of Ni-Sn and Ni-B electrodes.The charge transfer resistance of electrode is 1.56Ω,and the excellent hydrogen evolution activity is still maintained after 5000 cycles of voltammetry and 72 h electrolysis.The abundant surface morphology and amorphous characteristic structure can significantly increase the electrochemical active surface area and catalytic active site.The regulation of B and Sn on the electronic structure of Ni effectively decreases the charge transfer resistance and improves the properties of electrocatalytic hydrogen evolution reaction.
作者
阳刚
何捍卫
YANG Gang;HE Hanwei(Powder Metallurgy Research Institute,Central South University,Changsha 410083,China)
出处
《粉末冶金材料科学与工程》
2023年第3期276-287,共12页
Materials Science and Engineering of Powder Metallurgy
关键词
Ni-Sn-B电催化剂
电沉积
自支撑电极
析氢反应
镍网
Ni-Sn-B electrocatalyst
electrodeposition
self-supported electrode
hydrogen evolution reaction
Ni mesh