摘要
采用化学镀的方法在2024铝合金表面制备了Ni-W-P/TiO_(2)复合镀层,基于差示扫描量热法(DSC)结果,确定了复合镀层热处理温度范围为350~550℃。利用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)、维氏硬度测试仪、滑动磨损试验机和电化学工作站等研究了热处理温度对Ni-W-P/TiO_(2)复合镀层的形貌、组织结构、耐磨性与耐蚀性的影响。结果表明:随着热处理温度的升高,Ni-W-P/TiO_(2)复合镀层表面变得平整且致密,但热处理温度超过450℃时,镀层表面晶粒变得粗大;截面形貌观察发现,复合镀层与基体结合良好,无明显裂纹;随着热处理温度升高,Ni-W-P/TiO_(2)复合镀层由非晶态结构向晶态结构转变,在450℃热处理后镀层析出Ni_(3)P相,此时镀层的显微硬度最大(849.1 HV0.1),平均摩擦系数最小(0.069),磨损速率最低(0.138 mg/min);在400℃热处理后镀层的耐蚀性最好,高于400℃热处理后,镀层的耐蚀性有所下降。
Ni-W-P/TiO_(2) composite coating was prepared on the surface of 2024 aluminum alloy by electroless plating.Based on the results of differential scanning calorimetry(DSC),the heat treatment temperature range of the composite coating was determined to be 350-550℃.The effects of heat treatment temperature on morphology,microstructure,wear resistance and corrosion resistance of the Ni-W-P/TiO_(2) composite coating were investigated by means of optical microscope(OM),scanning electron microscopy(SEM),X-ray diffractometer(XRD),Vickers hardness tester,sliding wear tester and electrochemical workstation.The results show that with the increase of heat treatment temperature,the surface of the Ni-W-P/TiO_(2) composite coating becomes smooth and compact,but when the heat treatment temperature exceeds 450℃,the surface grains of the coating become coarse,and the cross-section morphology observation shows that the coating is well bonded with the substrate without obvious cracks.With the increase of heat treatment temperature,the Ni-W-P/TiO_(2) composite coating changes from amorphous structure to crystalline structure.After heat treatment at 450℃,Ni_(3)P phase precipitates in the coating.At this time,the microhardness of the coating is the highest(849.1 HV0.1),the average friction coefficient is the lowest(0.069),and the wear rate is the lowest(0.138 mg/min).After heat treatment at 400℃,the corrosion resistance of the coating is the best,and when the temperature is higher than 400℃,the corrosion resistance of the coating decreases.
作者
苏鹏
刘豪
王小红
龙武
蒋焰罡
李子硕
王强
SU Peng;LIU Hao;WANG Xiao-hong;LONG Wu;JIANG Yan-gang;LI Zi-shuo;WANG Qiang(Petroleum Engineering Technology Research Institute of Northwest Oilfield Branch of Sinopec,Urumqi 830000,China;Department of New Energy and Materials,Southwest Petroleum University,Chengdu 610500,China;Zhuzhou Cemented Carbide Group Corp.Ltd,Zhuzhou 412000,China)
出处
《材料热处理学报》
CAS
CSCD
北大核心
2022年第1期166-174,共9页
Transactions of Materials and Heat Treatment
基金
四川省科技厅项目(21YYJC1046)。