期刊文献+

基于改进经验小波变换与分形特征集的风力机齿轮箱故障诊断 被引量:1

FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON IMPROVED EMPIRICAL WAVELET TRANSFORM AND FRACTAL FEATURE SET
下载PDF
导出
摘要 针对风力机齿轮箱振动响应信号具有强非线性及非平稳性的特点,考虑平均幅值对平均谱负熵时频域成分权重自适应调节,提出连续改进平均谱负熵方法(ICASN)以体现信号细节复杂度特征,并将ICASN引入经验小波变换(EWT),替代傅里叶谱作为频带划分依据。采用ICASN-EWT分解振动信号,基于改进平均谱负熵筛选特征分量,剔除信号冗余与噪声影响。分析各敏感分量分形特征并构建高维特征集,采用流形学习进行维数约简,并结合分形高斯噪声改进灰狼算法优化支持向量机关键参数,将降维后的向量集输入优化支持向量机进行故障识别与诊断,准确率高达100%。 Since the vibration response signal of wind turbine gearbox is highly nonlinear and non-stationary,under the premise of considering the adaptive adjustment of the average amplitude to the average spectral negative entropy of time and frequency domain component weight,the improved continuous average spectral negentropy(ICASN)method is proposed to reflect the detail complexity characteristics of signals.Moreover,ICASN is introduced into Empirical Wavelet Transform(EWT)to replace Fourier spectrum as the basis of frequency band division.According to ICASN-EWT decomposition of vibration signals,the feature components are screened based on Improved Average Spectral Negentropy(IASN)to eliminate signal redundancy and noise influence.Then,the fractal characteristics of each sensitive component are analyzed and the high dimensional feature set is constructed.Meanwhile,Manifold Learning(ML)is used for dimension reduction.Moreover,take fractal Gaussian Noise Grey Wolf Optimizer(FGNGWO)to optimize the key parameters of Support Vector Machine(SVM).The vector set after dimensionality reduction is input into the optimized support vector machine for fault identification and diagnosis,and the accuracy is up to 100%.
作者 孙康 金江涛 李春 叶柯华 许子非 Sun Kang;Jin Jiangtao;Li Chun;Ye Kehua;Xu Zifei(University of Shanghai for Science and Technology,Energy and Power Engineering Institute,Shanghai 200093,China;Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering,Shanghai 200093,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2023年第5期310-319,共10页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51976131 52006148 52106262) 上海“科技创新行动计划”地方院校能力建设项目(19060502200)。
关键词 风力机 齿轮箱 故障检测 支持向量机 经验小波变换 连续改进平均谱负熵 分形高斯噪声改进灰狼算法 wind turbines gearbox fault detection support vector machines empirical wavelet transform improved continuous average spectral negentropy fractal Gaussian noise grey wolf optimizer
  • 相关文献

参考文献2

二级参考文献32

  • 1李增芳,何勇,宋海燕.基于主成分分析和集成神经网络的发动机故障诊断模型研究[J].农业工程学报,2006,22(4):131-134. 被引量:24
  • 2杜巧连,张克华.基于自身振动信号的液压泵状态监测及故障诊断[J].农业工程学报,2007,23(4):120-123. 被引量:33
  • 3Huang N H, Shen Z, Long S R, et al. The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [ J ]. Proc. R. Soc. London A, 1998, 454:903 - 995. 被引量:1
  • 4Ralph A W. Minimum entropy deconvolution [ J ]. Geoexplora- tion, 1978,16( 1 ) :21 -35. 被引量:1
  • 5Endo H, Randall R B. Application of a minimum entropy de- convolution filter to enhance Autoregressive model based geartooth fault detection technique [ J ]. Mechanical Systems and Signal Processing, 2007,21:906 - 919. 被引量:1
  • 6Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using mini- mum entropy deconvolution combined, with spectral kurtosis [J]. Mechanical Systems and Signal Processing, 2007,21 : 2616 - 2633. 被引量:1
  • 7Wang W, Lee H. An energy kurtosis demodulation technique for signal denoising and bearing fault detection [ J ]. Measure- ment Sciences and Technology,2013,24 : 1 - 11. 被引量:1
  • 8Loparo K A. Bearings vibration data set, http://csegroups ease. edu/bearingdatacenter/. 被引量:1
  • 9Qiu H, Jay L, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling bearing element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(4): 1066-1090. 被引量:1
  • 10Bin G F, Gao J J, Li X J. Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network[J]. Mechanical System and Signal Processing, 2012, 27(2): 696-711. 被引量:1

共引文献90

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部