期刊文献+

基于遗传算法优化BP神经网络的液压系统故障诊断 被引量:12

Hydraulic System Fault Diagnosis Based on Genetic Algorithm Optimized BP Neural Network
下载PDF
导出
摘要 液压系统作为控制和动力传输设备的核心部件,在现代工业生产机械中被广泛应用,准确诊断其故障具有提高生产效率和保障工作安全性等重要的工程意义。液压系统一旦发生故障往往是多故障同时出现,传统BP神经网络故障诊断算法往往不能满足多故障诊断准确率,提出一种基于遗传算法改进BP神经网络(GA-BP)的液压系统故障诊断方法,针对不同采样频率下多传感器信息融合的液压系统3种典型的故障模式进行对比分析。结果表明:GA-BP故障诊断算法相对于传统的BP神经网络具有更好的诊断性能。 Hydraulic system is the core component of control and power transmission equipment.It is widely used in modern industrial production machinery.Improving the accuracy of hydraulic system fault diagnosis has important engineering significance such as improving engineering efficiency and ensuring work safety.Once faults occur,multiple faults occur at the same time,the traditional BP neural network fault diagnosis system cannot meet the diagnostic accuracy.A method of hydraulic system diagnosis was proposed based on genetic algorithm optimizing the BP neural network(GA-BP).Aiming at three typical fault modes of multi-sensor information fusion hydraulic system under different sampling frequencies,the comparative analysis was made.The results show that the GA-BP fault diagnosis algorithm has better diagnostic performance than the traditional BP neural network.
作者 李文华 牛国波 刘羽佳 LI Wenhua;NIU Guobo;LIU Yujia(National Center for International Research of Subsea Engineering Technology and Equipment,College of Marine Engineering,Dalian Maritime University,Dalian Liaoning 116026,China)
出处 《机床与液压》 北大核心 2023年第8期159-164,共6页 Machine Tool & Hydraulics
基金 国家自然科学基金面上项目(51779026) 工信部高技术船舶科研计划(工信部装函﹝2018﹞473号) 国家重点研发计划资助项目(2018YFC0309003) 辽宁省科学技术计划(2020-HYLH-35) 辽宁省“兴辽英才计划”资助项目(XLYC2007092) 高等学校学科创新引智计划(111计划)(B18009)。
关键词 液压系统 故障诊断 BP神经网络 GA-BP算法 Hydraulic system Fault diagnosis BP neural network GA-BP algorithm
  • 相关文献

参考文献13

二级参考文献93

  • 1蔡普,林慕义,郑鑫,闻健.车辆电液动力制动系统的联合仿真与实验[J].系统仿真学报,2015,27(4):893-899. 被引量:4
  • 2杨扬,龚国芳,胡国良,杨华勇.模拟盾构机推进液压系统泵站集成设计[J].机床与液压,2006,34(4):118-120. 被引量:11
  • 3周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J].机械工程学报,2006,42(9):6-14. 被引量:148
  • 4郭堃,陈欠根,谭祖湘,李渊博.神经网络在复杂液压系统故障诊断中的应用[J].机床与液压,2006,34(10):197-199. 被引量:10
  • 5PAN Wen tsao. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge Based Systems,2012,26(1):69 -74. 被引量:1
  • 6Chine W, Mellit A, Lughi V, et al. A Novel Fault Diagno- sis Technique for Photovoltaic Systems Based on Artificial Neural Networks [ J ]. Renewable Energy, 2016, (90) : 501 -512. 被引量:1
  • 7Hakim S J S, Abdul Razak H, Ravanfar S A. Fault Diagno- sis on Beam-like Structures from Modal Parameters Using Artificial Neural Networks [ J ]. Measurement, 2015, (76) : 45 -61. 被引量:1
  • 8Shao M, Zhu X J, Cao H F, et al. An Artificial Neural Net- work Ensemble Method for Fault Diagnosis of Proton Ex- change Membrane Fuel Cell System [ J ]. Energy, 2014, (67) :268 - 275. 被引量:1
  • 9CHEN Xiaoyue, ZHOU Jianzhong, XIAO Jian, et al. Fault Diagnosis Based on Dependent Feature Vector and Probabili- ty Neural Network for Rolling Element Bearings [ J ]. Ap- plied Mathematics and Computation, 2014, ( 247 ) : 835 - 847. 被引量:1
  • 10Fernando H, Surgenor B. An Unsupervised Artificial Neural Network Versus a Rule-based Approach for Fault Detection and Identification in an Automated Assembly Machine [ J ]. Robotics and Computer-Integrated Manufacturing, 2015, (11) :006. 被引量:1

共引文献148

同被引文献132

引证文献12

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部