期刊文献+

纵向关系的探究:基于交叉滞后结构的追踪模型 被引量:5

Exploring the Longitudinal Relations:Based on Longitudinal Models with Cross-Lagged Structure
下载PDF
导出
摘要 基于交叉滞后结构的追踪模型对于揭示变量间纵向关系具有重要作用,也为因果关系的验证奠定了基础。交叉滞后面板模型在一定条件下可转换为其他形式的模型,如何选择适当的模型是重要的议题。研究对各模型进行概述,并从模型结构、预设轨迹、时间点要求等方面进行比较,最后通过一个实例说明如何选择适当的模型。结果表明,不同模型在变量关系的判断上可能给出很不同的结果,实际运用中应当有模型选择和模型比较的意识。 A cross-lagged structure usually consists of two kinds of effects,autoregressive effects of the prior level of a variable on the current level of itself,and cross-lagged effects of the prior level of one variable on the current level of another variable.Longitudinal models with the cross-lagged structure are well recognized as powerful techniques for revealing longitudinal relations between two variables and laying the foundation of diachronic causation.There have been several cross-lagged longitudinal models,while practitioners know little about the association and difference among them,which makes it difficult to choose the most proper one.Although these models are similar in structure,they may differ in the results of estimation.Thus,it is necessary to get a whole picture of these longitudinal models and learn how to compare and choose among them.The present study aims to analyze different cross-lagged longitudinal models and compare them,so as to reveal the importance of model comparison and model selection and provide strategies to select among models.First,we introduce four popular longitudinal models with cross-lagged structure:Cross-Lagged Panel Model(CLPM),Random-Intercept Cross-Lagged Panel Model(RI-CLPM),Latent Curve Model with Structured Residuals(LCM-SR),and Latent Change Score Model(LCS).Then,we clarify the similarities and associations among them.Next,we discuss their differences in various aspects.Finally,we conduct an empirical study to illustrate the procedure of model selection.Results show that:(1)These models are very similar in the model configuration because they all analyze diachronic relations by the cross-lagged structure;(2)CLPM can transform into RI-CLPM,LCM-SR and LCS under certain conditions;(3)Different models focus on different developmental characteristics and each of them can provide valuable information on the change process;(4)These models could give different estimation results when applied to the same data set,which may induce different conclusions.We summarize several refe
作者 方俊燕 温忠麟 黄国敏 Fang Junyan;Wen Zhonglin;Huang Guomin(Leisure Sports and Management Faculty,Guangzhou Sport University,Guangzhou,5105001;Center for Studies of Psychological Application/School of Psychology,South China Normal University,Guangzhou,510631;School of Psychology,South China Normal University,Guangzhou,510631)
出处 《心理科学》 CSCD 北大核心 2023年第3期734-741,共8页 Journal of Psychological Science
基金 国家自然科学基金项目(32171091)的资助。
关键词 纵向关系 交叉滞后 追踪模型 模型选择 longitudinal relation cross-lagged longitudinal model model selection
  • 相关文献

参考文献2

二级参考文献38

  • 1温忠麟,侯杰泰,张雷.调节效应与中介效应的比较和应用[J].心理学报,2005,37(2):268-274. 被引量:3115
  • 2王天夫.社会研究中的因果分析[J].社会学研究,2006(4):132-156. 被引量:78
  • 3[1]Tucker L R, Lewis C. The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 1973, 38: 1~10 被引量:1
  • 4[2]Steiger J H, Lind J M. Statistically-based tests for the number of common factors. Paper presented at the Psychometrika Society Meeting, IowaCity, May, 1980 被引量:1
  • 5[3]Bentler P M, Bonett D G. Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 1980, 88: 588~ 606 被引量:1
  • 6[4]Bentler P M. Comparative fit indices in structural models. Psychological Bulletin,1990, 107: 238~ 246 被引量:1
  • 7[5]McDonald R P, Marsh H W. Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychological Bulletin, 1990,107: 247~ 255 被引量:1
  • 8[6]Marsh H W, Balla J R, Hau K T. An evaluation of incremental fit indices: A clarification of mathematical and empirical processes. In: Marcoulides G A, Schumacker R E eds. Advanced structural equation modeling techniques. Hillsdale, NJ: Erlbaum, 1996. 315~ 353 被引量:1
  • 9[7]Browne M W, Cudeck R. Alternative ways of assessing model fit. In: Bollen K A, Long J S eds. Testing Structural Equation Models. Newbury Park, CA: Sage, 1993. 136~ 162 被引量:1
  • 10[8]Joreskog K G, Srbom D. LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago: Scientific Software International, 1993 被引量:1

共引文献1323

同被引文献301

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部