期刊文献+

基于贝叶斯优化Bi-LSTM的刀具磨损状态监测模型 被引量:2

Tool Wear Detection Based on Bayesian Optimized Bi-LSTM
下载PDF
导出
摘要 针对刀具磨损在线监测过程中信号特征较弱、外界噪声干扰较大导致的预测准确度较差问题,提出了一种基于贝叶斯优化(BO)双向长短时记忆网络(Bi-LSTM)的刀具磨损状态监测模型。结合斯皮尔曼相关系数和最大互相关系数来筛选降噪后切削力信号的时域、频域及时频域特征,输入到建立好的Bi-LSTM模型进行训练;针对Bi-LSTM模型参数组合对精度影响大且难以选择的问题,采用贝叶斯优化算法进行超参数寻优;利用铣削加工实验对模型进行验证。结果表明,该方法能快速得到模型最优超参数,同时兼具稳定性和准确性,与其他深度学习模型相比,准确率更高,实验证明了该模型的有效性和可行性。 Aiming at the problem of poor prediction accuracy caused by weak signal characteristics and large external noise interference in the process of tool wear on-line detection,a tool wear detection model based on bayesian optimized bidirectional long-term and short-term memory network is proposed.The spearman correlation coefficient and the maximum correlation number are combined to screen the time domain,frequency domain and time domain characteristics of the denoised cutting force signal,which are input into the established Bi-LSTM model for training.Aiming at the problem,the parameter combination of Bi-LSTM model has a great impact on the accuracy and is difficult to select,bayesian optimization algorithm is used to optimize the super parameters.The milling experiment is used to verify the model.The results show that this method can quickly obtain the optimal super parameters of the model,and has both stability and accuracy.Compared with other deep learning models,the accuracy of the method is higher,which proves the effectiveness and feasibility of the model.
作者 王樱达 丁泽 王延瓒 刘会永 张松 王佳宁 Wang Yingda;Ding Ze;Wang Yanzan;Liu Huiyong;Zhang Song;Wang Jianing(不详;Weichai Power Co.,Ltd.,Weifang,Shandong 261000,China)
出处 《工具技术》 北大核心 2023年第6期133-137,共5页 Tool Engineering
关键词 贝叶斯优化 双向长短时记忆网络 特征筛选 刀具磨损状态监测 bayesian optimization bidirectional long short-term memory network feature screening tool wear detection
  • 相关文献

参考文献7

二级参考文献58

共引文献191

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部