摘要
现代电力系统中,由于可再生能源输出功率、负荷变化以及其他随机过程的存在,使得系统状态参数中往往混杂着噪声,因此有必要采取适当的方法,从随机干扰的观测信号中提取有效的系统状态参数。首先对卡尔曼滤波基本理论进行了介绍,给出了卡尔曼滤波的基本过程。然后主要综述卡尔曼滤波及其扩展形式在电力系统短期负荷预测、动态状态估计、电能质量分析、继电保护、风电场风速预测、电机状态和参数估计等方面的应用。最后给出了卡尔曼滤波在电力系统中应用的相关结论及其未来发展趋势。
In the modern power system, its state parameters are often mixed with noise since the existing of output power of renewable energy, load changing and other stochastic processes. Therefore, taking the appropriate method is needed to extract the valid system state parameters from observed signal involving stochastic disturbance. An outline of Kalman filtering method is described and the basic process of Kalman filter is given; then Kalman filter and its extended form on the application of short-term load forecasting, dynamic state estimation, power quality analysis, relay protection, wind speed forecasting, motor state and parameters estimation are surveyed; finally, the relevant conclusions of Kalman filter in the application of power system are pointed out and its development trend is proposed.
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2014年第6期135-144,共10页
Power System Protection and Control
基金
国家自然科学基金资助项目(51307018)
吉林省科技发展计划青年基金(201201108)
国家留学基金委资助(201207790009)
东北电力大学优秀青年骨干教师资助项目~~