期刊文献+

基于模糊聚类的分散型多用户高校差异化用电行为分析

Analysis of Differentiated Electricity Consumption Behaviors of Decentralized Multi-users in Different Colleges and Universities Based on Fuzzy Clustering
下载PDF
导出
摘要 研究高等院校用电量,对其用电水平进行合理分析与预测,有利于做好电力规划与需求侧管理决策。采用自适应模糊C均值算法,对校区分散的多用户的负荷数据进行聚类分析,提出了一种新的用户分类方法。对其用电行为特性差异化进行研究,通过准确描述各区域用户的用电行为特性,能为校区错峰用电管理、电力负荷调节等需求响应提供有力的理论支撑。 Electricity consumption in colleges and universities increases gradually.In order to rationally analyze and predict the electricity utilization level,do well in electricity planning,and make management decision-making from the demand side,the study uses the adaptive fuzzy C-means algorithm,does cluster analysis of the load data of multiple users scattered in campus,and proposes a new user classification method.The study researches the differentiation of their electricity consumption behavior characteristics,accurately describes the characteristics in each region,and provides strong theoretical support for demand response,such as off-peak power management and power load regulation in the campus,etc.
作者 赵雯 Zhao Wen(Xi’an University of Finance and Economics,Xi’an 710100,China)
机构地区 西安财经大学
出处 《黑龙江科学》 2023年第9期97-99,共3页 Heilongjiang Science
关键词 高等院校 用电量 负荷聚类 模糊C均值聚类算法 Colleges and universities Electricity consumption Load cluster Fuzzy C-means algorithm
  • 相关文献

参考文献4

二级参考文献62

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部