期刊文献+

基于粒子群优化算法的最大相关最小冗余混合式特征选择方法 被引量:11

A maximum relevance minimum redundancy hybrid feature selection algorithm based on particle swarm optimization
原文传递
导出
摘要 在分析粒子群优化(PSO)算法和简化PSO算法的基础上,提出一种基于PSO的最大相关最小冗余的Filter-Wrapper混合式特征选择方法.Filter模型是基于互信息和特征的相关冗余综合测度,Wrapper模型是基于改进的简化粒子群算法.在PSO搜索过程中,引入相关冗余度量标准来选择特征子集,将Filter融合在Wrapper中,利用Filter的高效率和Wrapper的高精度提高搜索的速度和性能.最后以支持向量机(SVM)为分类器,在公共数据集UCI上进行实验,实验结果表明了所提出算法的可行性和有效性. A Filter-Wrapper hybrid feature selection approach with maximum relevance and minimum redundancy based on particle swarm optimization(PSO) algorithm is proposed on the analysis of PSO algorithm and simplified PSO algorithm. The Filter is based on mutual information and the composite measure of feature relevance and redundancy, while the Wrapper is based on a simply modified PSO algorithm. The relevance and redundancy criterion is introduced to select features in the PSO's searching procedure. Meantime, the Filter is fused into the Wrapper. The speed and performance of the search are improved with the higher efficiency of the Filter and the greater accuracy of the Wrapper. The experiment results based on UCI data sets with support vector machine(SVM) as the classifier show the effectiveness and feasibility of the algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2013年第3期413-417,423,共6页 Control and Decision
基金 国家自然科学基金项目(60975026 61273275)
关键词 特征选择 粒子群优化 FILTER WRAPPER 互信息 feature selection particle swarm optimization Filter Wrapper mutual information
  • 相关文献

参考文献6

二级参考文献38

共引文献362

同被引文献121

  • 1王晓华,马大庆.计算机辅助诊断在肺结节中的应用进展[J].中华放射学杂志,2006,40(4):443-445. 被引量:14
  • 2毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 3CLERC M, KENNEDY J. The Particle Swarm-explosion, Stability, and Convergence in a Multidimensional Complex Space[J]. IEEETrans. Evol. Comput, 2002, 6(1): 58-73. 被引量:1
  • 4ZHANG W, LIU Y. An Adaptive PSO Algorithm for Reactive Power Optimization[M]//Advances in Power System Control Operation and Management. Hong Kong: Application of Artificial Intelligence Technique, 2003: 1534-1538. 被引量:1
  • 5Siegel R, Naishadham D, Jemal A. Cancer s:atistlcs, 2013 [J] CA: A Cancer Journal for Clinicians, 2013, 63(1): 11-30. 被引量:1
  • 6Lonsdale M N, Beyer T. Dual modality PET/CT in strumentation today and tomorrow[J]. European journal of radiology, 2010, 73(3) : 452 460. 被引量:1
  • 7Boroczky L, Zhao Luyin, Lee K P. Feature subset se lection for improving the performance of false positive reduction in lung nodule CAD[J]. IEEE Transactions on Information Technology in Biomedicine, 2006, 10 (3) : 504-511. 被引量:1
  • 8Saeys Y, Inza I, Larrafmga P. A review of feature se- lection techniques in bioinformatics [J]. Bioinforrnat ics, 2007, 23(19): 2507- 2517. 被引量:1
  • 9Guyon I, Elisseeff A. An introduction to variable and feature selection [J]. Journal of Machine Learning Re search, 2003(3): 1157-1182. 被引量:1
  • 10Hsu H H, Hsieh C W, Lu M D. Hybrid feature selec tion by combining filters and wrappers [J]. Expert Systems with Applications, 2011, 38(7): 8144-8150. 被引量:1

引证文献11

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部