期刊文献+

骨水泥分布位置与含量对股骨反转子间骨折应力、位移影响的有限元分析

Finite element analysis of the effect of the distribution position and content of bone cement on the stress and displacement of reverse femoral intertrochanteric fracture
下载PDF
导出
摘要 背景:股骨近端防旋髓内钉是治疗骨质疏松性反转子间骨折的首选治疗方案,其中骨水泥增强可减少股骨近端防旋髓内钉切出与切穿的概率,但目前没有相关生物力学研究证明骨水泥的含量及位置对骨折端应力及位移的影响。目的:通过有限元方法分析骨水泥增强型股骨近端防旋髓内钉中骨水泥含量及位置对老年骨质疏松性股骨反转子间骨折应力、应变及位移的影响。方法:采用Mimics软件建立健康成年女性右侧股骨模型,并在Geometric软件中进行光滑处理,利用Solidworks软件分别建立股骨近端防旋髓内钉(无骨水泥、头端球形1 mL骨水泥、头端球形2 mL骨水泥、头端球形3.4 mL骨水泥、螺旋刀片周围圆柱形5 mL骨水泥)5种类型内固定方式及股骨反转子间骨折(AO分型31-A3.1型)模型,装配后,在Ansys软件中比较5种模型内植物的总应力分布、应力峰值及位移。结果与结论:①无骨水泥与头端球形1 mL、头端球形2 mL、头端球形3.4 mL、螺旋刀片周围圆柱形5 mL骨水泥增强型股骨近端防旋髓内钉组内植物的应力峰值分别为571.07 MPa(位于螺旋刀片与主钉交界处),495.45 MPa(位于螺旋刀片与主钉交界处)、467.20 MPa(位于主钉与远端螺钉连接处)、642.70 MPa(位于主钉与远端螺钉连接处)、458.58 MPa(位于远端与主钉交界处);②无骨水泥与头端球形1 mL、头端球形2 mL、头端球形3.4 mL、螺旋刀片周围圆柱形5 mL骨水泥增强型股骨近端防旋髓内钉组内植物的最大位移量分别为9.2605,7.5891,7.3168,6.7907,6.6157 mm,均位于股骨头近端;③结果显示,采用股骨近端防旋髓内钉内固定股骨反转子间骨折时,骨水泥增强较未增强有明显的力学稳定性,并且螺旋刀片周围5 mL骨水泥的增强效果最好,对于老年不稳定型股骨转子间骨折是优先选择。 BACKGROUND:The proximal femoral nail antirotation is the preferred treatment for reverse osteoporotic intertrochanteric fractures.Bone cement enhancement can reduce the probability of proximal femoral nail antirotation cut-out and cut-through,but there are no relevant biomechanical studies demonstrating the effect of bone cement content and location on the stress and displacement of the fracture end.OBJECTIVE:To investigate the effects of different contents and locations of bone cement in cement-reinforced proximal femoral nail antirotation on stress,strain,and displacement of reverse osteoporotic femoral intertrochanteric fractures in the elderly by finite element analysis.METHODS:A healthy adult female right femur model was extracted by Mimics software and smoothed in Geometric software.Five types of internal fixation methods of proximal femoral nail antirotation(cementless,cephalic spherical 1 mL,cephalic spherical 2 mL,cephalic spherical 3.4 mL,and cylindrical 5 mL around spiral blade)and femoral intertrochanteric fracture(AO subtype 31-A3.1 type)model were established in Solidworks software.After assembly,the total stress distribution,peak stress and displacement of the five models of implants with the femur were compared in Ansys software.RESULTS AND CONCLUSION:(1)The peak stresses of proximal femoral nail antirotation with head-end spherical 1 mL,head-end spherical 2 mL,head-end spherical 3.4 mL,and cylindrical 5 mL enhanced proximal femoral nail antirotation around the spiral blade respectively were 571.07 MPa(located at the junction of the spiral blade and the main nail),495.45 MPa(located at the junction of the spiral blade and the main nail),467.20 MPa(located at the junction of the main nail and the distal screw connection),642.70 MPa(located at the junction of the main nail and distal screw connection),and 458.58 MPa(located at the junction of the spiral blade and the main nail).(2)The maximum displacements of proximal femoral nail antirotation with head end sphere 1 mL,head end sphere 2 mL,head end
作者 张乾龙 买合木提·亚库甫 宋晨辉 刘修信 任政 刘宇哲 木牙沙尔·阿布都沙拉木 萨吉旦·艾克拜尔 冉建 Zhang Qianlong;Maihemuti·Yakufu;Song Chenhui;Liu Xiuxin;Ren Zheng;Liu Yuzhe;Muyashaer·Abudushalamu;Sajidan·Aikebaier;Ran Jian(Xinjiang Medical University,Urumqi 830054,Xinjiang Uygur Autonomous Region,China;Sixth Affiliated Hospital of Xinjiang Medical University,Urumqi 830002,Xinjiang Uygur Autonomous Region,China)
出处 《中国组织工程研究》 CAS 北大核心 2024年第3期336-340,共5页 Chinese Journal of Tissue Engineering Research
基金 新疆维吾尔自治区自然科学基金资助项目(2021D01C454),项目负责人:刘修信~~
关键词 内植物 股骨近端防旋髓内钉 股骨反转子骨折 有限元分析 骨水泥 增强型股骨近端防旋髓内钉 implant proximal femoral nail antirotation reverse femoral intertrochanteric fracture finite element analysis bone cement enhanced proximal femoral nail antirotation
  • 相关文献

参考文献2

二级参考文献30

  • 1郭良煜,郭卫春.磷酸钙骨水泥在骨修复应用研究的新进展[J].中国骨与关节杂志,2020,0(2):157-160. 被引量:16
  • 2Roche JJW, Wenn RT, Sahota O, et al. Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study [J] . BMJ, 2005, 331..1374-1378. 被引量:1
  • 3Partanen J, Heikkinen J, Jamsa T, et al. Characteristics of lifetime factors, bone metabolism, and bone mineral density in patients with hip fracture[J]. J Bone Miner Metab,2002,20:367-375. 被引量:1
  • 4Hawker GA, Jamal SA, Ridout R, et al. A clinical prediction rule to identify premenopausal women with low bone mass[J]. Osteoporos Int, 2002 , 13: 400- 406. 被引量:1
  • 5Kanis JA, Borgstrom F, de Laet C, et al. Assessment of fracture risk[J]. Osteoporosis Int, 2005,16:581-589. 被引量:1
  • 6Seeman E, Delmas PD. Bone quality the material and structural basis of bone strength and fragility[J]. N Engl J Med ,2006,354:2250-2261. 被引量:1
  • 7Holzer G, Skrbensky GV, Holzer LA, et al. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength[J]. J Bone Miner Res, 2009,24:468-474. 被引量:1
  • 8McCreadie BR, Goldstein SA. Biomechanics of fracture: is bone mineral density sufficient to assess risk[]J? J Bone Miner Res, 2000,15: 2305-2308. 被引量:1
  • 9Ward KA, Adams JE, Hangartner TN. Recommendations for thresholds for cortical bone geometry and density measurement by peripheral quantitative computed tomography[J]. Calcif Tissue Int , 2005,77: 275-280. 被引量:1
  • 10Zebaze RMD, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a crosssectional study[J]. Lancet, 2010,375:1729-1736. 被引量:1

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部