摘要
以一台2.5 k W切向聚磁型并联结构混合励磁电机为研究对象,研究切向聚磁型并联结构混合励磁电机磁极偏心对电机振动噪声的影响。根据电机电磁振动噪声相关理论,建立磁极偏心切向聚磁型并联结构混合励磁电机模型,采用磁极偏心优化其气隙磁密畸变率和电磁噪声,分析该电机在优化前后径向电磁力的阶次、频率特征,并对该电机的定子进行模态分析,利用ANSYS Workbench仿真平台搭建电机振动噪声耦合模型,计算优化前后电机的振动响应与噪声变化。结果表明:采用磁极偏心能有效优化电机气隙磁密和电磁力密度,气隙磁密谐波畸变率显著下降,电磁力(16,4 f1)分量幅值减小74%,从而可达到抑制电机振动噪声的目的。
Taking a hybrid excitation synchronous motor with a 2.5 kW tangential magnetizing parallel structure as the research object,the influence of magnetic pole eccentricity on its vibration and noise is studied.Based on the theory of electromagnetic vibration and noise of motors,a model of this motor is established.The magnetic pole eccentricity is used to optimize the gap flux density distortion rate and electromagnetic noise.The order and frequency characteristics of the radial electromagnetic force before and after optimization are analyzed.The modal analysis of the stator of the motor is carried out.The vibration and noise coupling model of the motor is built by ANSYS Workbench simulation platform,and the vibration response and noise variation of the motor before and after optimization are calculated.The results show that the magnetic pole eccentricity can effectively optimize the air gap flux density and electromagnetic force density,and the harmonic distortion rate of air gap flux density decreases significantly.The amplitude of the electromagnetic force(16,4 f1)component is reduced by 74%.So,the purpose of suppressing the vibration noise of the motor is achieved.
作者
庞亮
杨清亮
赵朝会
申合彪
张闻东
秦海鸿
PANG Liang;YANG Qingliang;ZHAO Chaohui;SHEN Hebiao;ZHANG Wendong;QIN Haihong(School of Electrical Engineering,Shanghai Dian Ji University,Shanghai 201306,China;Logistics Engineering College,Shanghai Maritime University,Shanghai 201306,China;College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《噪声与振动控制》
CSCD
北大核心
2023年第3期47-52,65,共7页
Noise and Vibration Control
基金
国家自然科学基金资助项目(51677089)。
关键词
振动与波
混合励磁
切向聚磁型
磁极偏心
电磁振动噪声
有限元仿真
vibration and wave
hybrid excitation
tangential magnetizing
magnetic pole eccentricity
electromagnetic vibration noise
finite element simulation