期刊文献+

深度学习图像重建算法在膝关节加速MRI中的临床应用研究 被引量:7

Clinical feasibility of 2D FSE sequences of the knee MRI protocol using deep-learning image reconstruction
下载PDF
导出
摘要 目的 评估使用和不使用深度学习重建(deep learning reconstruction,DLR)算法的膝关节加速二维(two dimensional,2D)快速自旋回波(fast spin echo,FSE)序列的图像质量和诊断效能。材料与方法前瞻性纳入92名怀疑有膝关节病变的患者,采用3.0 T MRI并行采集(parallel imaging,PI)基于K空间域重建(autocalibrating reconstruction for Cartesian sampling,ARC)算法进行膝关节加速2D FSE序列扫描,设置加速因子为2.0。扫描结束后系统自动保存为不使用DLR的原始图像(original images of FSE,FSE_O)和使用DLR后的FSE(deep learning reconstruction images of FSE,FSE_(DL))两组图像。采用主观(李克特5分量表,内容包括图像的整体质量、清晰度、诊断置信度)与客观定量测定图像信噪比(signal-to-noise ratio,SNR)与对比噪声比(contrast-to-noise ratio,CNR)相结合的方法对两组图像质量进行综合评价。分别测量比较膝关节质子密度加权成像(proton density weighted imaging,PDWI)、T1WI矢状位股骨下端骨髓腔、软骨、滑膜液、髌下脂肪垫、前交叉韧带各组织的SNR和软骨/滑膜液CNR。基于两组图像分别对膝关节结构异常进行评分,同时评估观察者间和观察者内评分一致性。结果四个临床标准方位加速2D FSE序列的MRI采集时间为4 min 39 s。FSE_(DL)的图像整体质量、清晰度及诊断置信度评分均高于FSE_O,其中对FSE_(DL)、FSE_O的图像清晰度评分差异有统计学意义(P<0.05)。两名医师对图像质量主观评价的一致性组内相关系数在0.710~0.898之间。使用DLR的PDWI、T1WI(PDWI_(DL)、T1WI_(DL))图像上股骨外侧髁、股骨外侧髁软骨、滑膜液、髌下脂肪垫SNR明显高于不使用DLR的PDWI、T1WI原始图像(PDWI_O、T1WI_O),PDWI_(DL)图像上软骨/滑膜液CNR明显高于PDWI_O,差异均具有统计学意义(P<0.05)。两名医师分别基于FSE_O及FSE_(DL)对膝关节结构异常进行评分,具有极好的一致性,κ值在0.954~1.000之间。比较同一名� Objective:To propose a rapid knee imaging based on two-dimensional fast spin echo sequence and examined the reliability and diagnostic performance of deep learning-based reconstruction images on knee joint pathology via comparison of images with and without deep learning reconstruction algorithm(DLR).Materials and Methods:A total of 92 patients,a protocol including accelerated two dimensional(2D)fast spin echo(FSE)sequences with autocalibrating reconstruction for cartesian sampling(ARC)as a kind of parallel imaging were enrolled in this prospective study.All MR data was reconstructed with and without DLR as original images of FSE(FSEO)and deep learning reconstruction images of FSE(FSEDL),respectively.Two radiologists subjectively assessed images at the aspects of overall image quality,sharpness and diagnostic confidence using a Likert scale(1-5,5=best),and also objectively evaluated signal-to-noise ratio(SNR)and contrast-to-noise ratio(CNR).SNR of femoral marrow,cartilage,synovial fluid,infrapatellar fat pad,anterior cruciate ligament and CNR of cartilage/synovial fluid were measured on proton density weighted imaging(PDWI)sequence and T1 weighted imaging(T1WI)sequence of the knee.Inter-observer and intra-observer subjective score consistency were also computed.Results:The overall image quality,sharpness and diagnostic confidence for FSEDL were higher compared to FSE0,showing significantly improved sharpness(P<0.05).Inter-and intra-reader agreement was substantial to almost perfect(ICC:0.710-0.898).For objective evaluation,SNR and CNR of PDWIDL and T1WIDL images were significantly higher than that of PDWI0 and T1WI0 images(P<0.05).Two radiologists respectively assessed the sequences regarding structural abnormalities of the knee based on FSE0 and FSEDL.Inter-and intra-reader agreement were excellent consistent(κ:0.954-1.000)for the detection of internal derangement.Intra-reader agreement was substantial to almost perfect(κ=0.769,0.771)for the assessment of cartilage defects and almost perfect(κ:0.944-1.000)for
作者 武夏夏 陆雪芳 刘昌盛 权光南 刘薇音 查云飞 WU Xiaxia;LU Xuefang;LIU Changsheng;QUAN Guangnan;LIU Weiyin;ZHA Yunfei(Department of Radiology,Renmin Hospital of Wuhan University,Wuhan 430060,China;GE Healthcare,Beijing 100176,China)
出处 《磁共振成像》 CAS CSCD 北大核心 2023年第5期53-59,共7页 Chinese Journal of Magnetic Resonance Imaging
基金 襄阳市医疗卫生领域科技计划项目(编号:2022YL31B)。
关键词 膝关节 卷积神经网络 深度学习 图像重建 并行采集 磁共振成像 knee joint convolutional neural network deep learning image reconstruction parallel imaging magnetic resonance imaging
  • 相关文献

参考文献2

二级参考文献3

共引文献21

同被引文献36

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部