摘要
为了探索动叶尾缘结构对气冷涡轮流场及气动性能影响规律,本文针对某船用燃气轮机高压涡轮动叶模型采用CFD软件分别开展了变叶盆侧尾缘长度、变叶背侧尾缘长度及尾缘全劈缝3种结构型式下的三维数值模拟研究。结果表明:涡轮进口流量主要受最小喉道面积控制,变叶盆侧尾缘长度气动性能优于变叶背侧尾缘长度,变叶盆侧尾缘长度总压损失系数随着两尾缘之间的距离增大而减小,出口相对气流角随着两尾缘之间距离的增大而有增大的趋势。两尾缘之间距离每增加1 mm,总压损失平均减少0.45%,出口气流角平均增大0.17°。尾缘全劈缝与最优变叶盆侧尾缘情况相比,尾缘全劈缝总压损失最小、出口相对气流角更接近几何出气角。
In order to explore the influence of the trailing edge structure of the blade on the flow field and aerodynamic performance of an air-cooled turbine,the three-dimensional numerical simulation of a high-pressure turbine rotor model of a marine gas turbine is carried out by CFD software under three types of structure,including the length of the trailing edge on the bucket side,the length of the trailing edge on the back side of the blade and the full split edge.The results show that the turbine inlet flow is mainly controlled by the minimum throat area;The aerodynamic performance of the trailing edge length of the variable blade basin is better than that of the trailing edge length of the variable blade basin.The total pressure loss coefficient of the trailing edge length of the variable blade basin decreases with the increase of the distance between the two trailing edges,and the relative airflow angle at the outlet tends to increase with the increase of the distance between the two trailing edges.For every 1 mm increase in the distance between the two trailing edges,the total pressure loss decreases by 0.45%on average,and the outlet airflow angle increases by 0.17°on average.Compared with the optimal trailing edge of the variable blade basin,the total pressure loss of the trailing edge is the smallest,and the outlet relative airflow angle is closer to the geometric outlet angle.
作者
李国强
游洋
徐波
李宗全
李妍萍
LI Guoqiang;YOU Yang;XU Bo;LI Zongquan;LI Yanping(No.703 Research Institute,China State Shipbuilding Co.,Ltd.,Harbin 150078,China)
出处
《应用科技》
CAS
2023年第2期12-16,共5页
Applied Science and Technology
基金
中船集团自立科技项目(202109Z)
黑龙江省自然科学基金项目(TD2021E001).
关键词
涡轮
气动性能
半劈缝
全劈缝
船用
数值计算
冷气掺混
流量
turbine
aerodynamic performance
semi-split
full split joint
marine
numerical calculation
cooling-air ejection
flow